

heat tracing specialists

Heat Tracing Products

CONSTANT WATTAGE

FEP	3
FEP-LT	
FEP-M	7
FEP-LV	9
SM-C	11

SELF-REGULATING

TSL	13
TSLm	15
TSLh	17
RG	19
FLV	21
SM-B	23

MINERAL INSULATED	
MISS-KN	25
MISS-K/B	27
CONTROLS	
115 Series	29
A419	31
TD-1	33
121 Series	35
MasterTrace	37
MS2102	41
DPNL	43
RSD4.5	45
AIC4	46
T1441/1441X	47
CONNECTION KITS	
R Series	48
PL/TML	50
RGPK/SCK-2	52
Roof & Gutter Accessories	54
Splice Kits	55
Tapes	56
Accessories	57
End Termination	58
	НТМ-750
HEAT TRANSFER MASTIC	нтм-750
HTM	59
Quick Trace	61

Table of Contents

FEP constant wattage heater cables are parallel-resistance electric heaters that provide constant power output along the entire length of cable. FEP constant wattage heater cables are constructed of 12 AWG bright copper buss wires which allow for long circuit lengths and support maintenance temperatures up to 200°F. The fluoropolymer dielectric protects the cable from exposure temperatures up to 400°F when de-energized. This is suitable for process pipes that are periodically steam purged (150PSIG).

FEP heater cables are perfectly safe in wet areas and provide excellent protection from impact and abrasion. The ground braid provides essential grounding protection and the optional fluoropolymer overjacket protects the braid in heavily corrosive environments from organic and inorganic compounds. FEP heater cables can be custom tailored to meet specific customer needs including, flexible power outputs up to 15 W/Ft., flexible service voltages up to 500V and broad choice in colors for identification or aesthetic purposes.

Unlike self-regulating heater cables, FEP cables are not limited to predetermined voltages and do not exhibit inrush. FEP cables typically last up to 4X as long as self-regulating heater cables and come with a standard 10 year warranty. FEP heater cables can be cut to length in the field using standard electrical tools and should not be overlapped. FEP constant wattage heater cables are ideally suited for all freeze protection and low to mid temperature process maintenance applications where the flow of fluid is essential. In areas requiring electric tracing such as: pipelines carrying chemicals, lubricants, food process, potable water, fire prevention systems and de-icing of roofs and downspouts. FEP cables are also an ideal solution for frost heave prevention systems and cryogenic systems such as LNG and ammonia storage. FEP heater cables will provide the exact amount of protection necessary for your application requirements.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

		Orde	ring Information	
Example Configuration			FEP 9-277 TC	and the
FEP	Wattage	Voltage	Braid/Jacket	Weight/1,000'
	1-15	1=120V	TC=Tinned Copper	80 Lbs.
		2=240V	NP=Nickel Plated Copper	79 Lbs.
T Rating	Т-3	4=480V	SS=Stainless Steel	80 Lbs.
			TCOJ=Fluoro <mark>polymer Jacket</mark>	90 Lbs.

Note: For other voltages not listed above (i.e. 208, 220, 277) please specify full voltage when ordering. Maximum permissible watt density, 15 W/Ft.

Output at Alternate Voltages					
Typical Heaters	110 VAC	120 VAC	208 VAC	240 VAC	277 VAC
FEP 4-1	3.3	4.0	12.0	16.0	-
FEP 6-1	5.0	6.0	18.0	-	-
FEP 9-1	7.5	9.0	-	-	-
FEP 10-2	2.1	2.5	7.5	10.0	13.3
FEP 15-2	3.1	3.8	11.3	15.0	20.0
Note: Dashed lined	indicates cal	ble failure im	minent.		

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with National Electric Code (NEC) Article 427.22 requirements, agency certifications, and local codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Ground fault protection is the responsibility of the end user and should be installed by a certified electrician.

Accessories	
-------------	--

PL-1	Power Connection Kit
EC-1CW	End Termination Kit
ESK-12	Inline Splice Kit
TSK-12	Tee Splice Kit
AL-1	Aluminum Tape
FG-1	Fiberglass Tape
TD-1	Snap Action Thermostat
TF115	Ambient Sensing Thermostat
TRF115	Line Sensing Thermostat

Note: Not all accessories are listed. See catalog for additional listings.

Maximum Circuit Length									
Sample Heaters	0 Ft.	50 Ft.	100 Ft.	150 Ft.	200 Ft.	250 Ft.	300 Ft.	400 Ft.	500 Ft.
FEP 3-1	3.0	2.99	2.98	2.94	2.90	2.85	2.79	2.64	2.46
FEP 5-1	5.0	4.98	4.93	4.84	4.73	4.59	4.42	4.04	3.62
FEP 3-2	3.0	3.0	3.0	2.99	2.98	2.96	2.95	2.90	2.85
FEP 8-2	8.0	7.99	7.96	7.90	7.83	7.73	7.63	7.35	7.03
FEP 15-2	15.0	14.96	14.84	14.65	14.39	14.08	13.68	_	_
FEP 4-277	4.0	3.99	3.99	3.98	3.96	3.95	3.92	3.87	3.80
FEP 8-277	8.0	7.98	7.96	7.92	7.86	7.79	7.71	7.50	7.25

Note: Dashed line indicates drop off exceeds output minimums or amperage exceeds conductor limitations.

TAD & Associates, Inc. P.O. Box 2170

Canyon Lake, TX 78133 800-755-7602

FEP-LT constant wattage heater cables are parallel-resistance electric heaters that provide constant power output along the entire length of cable. FEP-LT constant wattage heater cables are constructed of 14 AWG bright copper buss wires which allow for long circuit lengths and support maintenance temperatures up to 150°F. The fluoropolymer dielectric protects the cable from exposure temperatures up to 400°F when deenergized. This is suitable for process lines that are periodically steam purged (150 PSIG).

FEP-LT heater cables are perfectly safe in wet areas and provide excellent protection from impact and abrasion. The ground braid provides essential grounding protection and the optional fluoropolymer overjacket protects the braid in heavily corrosive environments from organic and inorganic compounds. FEP-LT heater cables can be custom tailored to meet specific customer needs including, flexible power outputs up to 7 W/Ft., flexible service voltages up to 277V and broad choice in colors for identification or aesthetic purposes.

Unlike self-regulating heater cables, FEP-LT cables are not limited to predetermined voltages and do not exhibit inrush. FEP -LT cables typically last up to 4X as long as self-regulating heater cables and come with a standard 10 year warranty. FEP-LT heater cables can be cut to length in the field using standard electrical tools and should not be overlapped. FEP-LT constant wattage heater cables are excellent for all types of low-process temperature and freeze protection applications. FEP-LT heater cables can be used in a wide variety of applications including frost heave prevention, de-icing of freezer doors, condensation drain lines, roof and gutter de-icing, snowmelting and radiant heating of floors. FEP-LT heater cables can also be used in domestic hot water applications. FEP-LT heater cables provide outstanding mechanical properties, ease of infield fabrication and complete freeze protection at an affordable price.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

		Order		
Example (Configuration		FEP-LT 6-208 TC	
FEP-LT	Wattage	Voltage	Braid/Jacket	Weight/1,000'
	1-15	1=120V	TC=Tinned Copper	80 Lbs.
		2=240V	NP=Nickel Plated Copper	79 Lbs.
T Rating	Т-3	4=480V	SS=Stainless Steel	80 Lbs.
			TCOJ=Fluoropolymer Jacke	t 90 Lbs.

Note: For other voltages not listed above (i.e. 208, 220, 277) please specify full voltage when ordering. Maximum permissible watt density, 7 W/Ft.

Output at Alternate Voltages					
Typical Heaters	110 VAC	120 VAC	208 VAC	240 VAC	277 VAC
FEP-LT 4-1	3.3	4.0	_	_	
FEP-LT 6-1	5.0	6.0	-	-	_
FEP-LT 7-1	5.8	7.0	-	-	_
FEP-LT 4-2	- 27)	_	3.0	4.0	5.3
FEP-LT 6-2	- 37	_	4.5	6.0	8.0
FEP-LT 7-2		_	5.2	7.0	9.3
Note: Dashed lined	indicates cal	ble failure im	minent or n	o appreciabl	e output.

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or

improperly installed, and to comply with National Electric Code (NEC) Article 427.22 requirements, agency certifications, and local codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Ground fault protection is the responsibility of the end user and should be installed by a certified electrician. Accessories

PL-1	Power Connection Kit
EC-1CW	End Termination Kit
ESK-CW	Inline Splice Kit
TSK-CW	Tee Splice Kit
AL-1	Aluminum Tape
FG-1	Fiberglass Tape
TD-1	Snap Action Thermostat
TF115	Ambient Sensing Thermostat
TRF115	Line Sensing Thermostat
IRFIIS	Line sensing mermostat

Note: Not all accessories are listed. See catalog for additional listings.

0 Ft. 50 Ft. 100 Ft. 150 Ft. 200 Ft. 250 Ft. 300 Ft. 400 Ft. 500 Ft. Sample Heaters FEP-LT 4-1 3.93 3.75 4.0 3.98 3.86 3.62 3.47 3.13 **FEP-LT 6-1** 6.0 5.96 5.85 5.68 5.45 5.17 4.87 _ _ **FEP-LT 8-1** 7.93 7.74 7.44 7.04 8.0 _ _ _ _ **FEP-LT 3-2** 3.0 3.00 2.99 2.98 2.96 2.94 2.92 2.86 2.78 5.45 **FEP-LT 6-2** 5.99 5.96 5.92 5.78 6.0 5.68 5.58 5.18 FEP-LT 4-277 3.97 4.0 3.99 3.98 3.95 3.92 3.89 3.81 3.71 FEP-LT 8-277 8.0 7.98 7.94 7.88 7.80 7.69 7.57 7.26 6.90

Note: Dashed line indicates drop off exceeds output minimums or amperage exceeds conductor limitations.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

Maximum Circuit Length

electric heaters that provide constant power output along the entire length of cable. FEP-M constant wattage heater cables are constructed of 16 AWG bright copper buss wires which allow for long circuit lengths and support maintenance temperatures up to 150°F. The fluoropolymer dielectric protects the cable from exposure temperatures up to 400°F when deenergized. This is suitable for process lines that are periodically steam purged (150 PSIG).

FEP-M heater cables are perfectly safe in wet areas and provide excellent protection from impact and abrasion. The ground braid provides essential grounding protection and the optional fluoropolymer overjacket protects the braid in heavily corrosive environments from organic and inorganic compounds. FEP-M heater cables can be custom tailored to meet specific customer needs including, flexible power outputs up to 7 W/Ft., flexible service voltages up to 277V and broad choice in colors for identification or aesthetic purposes.

Unlike self-regulating heater cables, FEP-M cables are not limited to predetermined voltages and do not exhibit inrush characteristics. FEP-M cables typically last up to 4X as long as self-regulating heater cables and come with a standard 10 year warranty. FEP-M heater cables can be cut to length in the field using standard electrical tools and should not be overlapped. FEP-M constant wattage heater cables are excellent for all types of low-process temperature and freeze protection applications. FEP-M heater cables can be used in a wide variety of applications including pipe freeze protection, de-icing of freezer doors, condensate drains, radiant heating. FEP-M heater cables provide outstanding mechanical properties, ease of in-field fabrication and complete freeze protection at an affordable price.

 Approvals

 CSA:

 Ordinary locations 2(B, E) 3C

 Hazardous locations

 Class 1 Div. 2 (Groups A, B, C, D)

 Class 2 Div. 2 (Groups E, F, G)

 Class 3 Div. 2

 UL Standard 515

 UL Standard 1673

 Note: For heater cable applications refer to National Electric Code Article 427

Note: For heater cable applications refer to National Electric Code Article 427 Fixed electric heating for pipelines and vessels.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Example (Configuration	FEP-M 7-277 TCOJ		
FEP-M	Wattage	Voltage	Braid/Jacket	Weight/1,000'
	1-7	1=120V	TC=Tinned Copper	54 Lbs.
		2=240V	NP=Nickel Plated Copper	53 Lbs.
T Rating	T-3		SS=Stainless Steel	54 Lbs.
			TCOJ=Fluoropolymer Jacket	61 Lbs.

Note: For other voltages not listed above (i.e. 208, 220, 277) please specify full voltage when ordering. Maximum permissible watt density, 7 W/Ft.

O VAC	120 VAC	208 VAC	240 1440	
			240 VAC	277 VAC
2.52	3.00	9.01	_	-
4.20	5.00	-	-	-
5.88	7.00	_	_	-
- 20	0.75	2.25	3.00	3.99
- 7	1.25	3.76	5.00	6.67
_	1.75	5.25	7.00	9.32
	4.20 5.88 — — —	4.20 5.00 5.88 7.00 - 0.75 - 1.25 - 1.75	4.20 5.00 - 5.88 7.00 - - 0.75 2.25 - 1.25 3.76 - 1.75 5.25	4.20 5.00 - - 5.88 7.00 - - - 0.75 2.25 3.00 - 1.25 3.76 5.00 - 1.75 5.25 7.00

Accessories

PL-1M	Power Connection Kit
EC-M	End Termination Kit
ESK-14	Inline Splice Kit
TSK-14	Tee Splice Kit
AL-1	Aluminum Tape
FG-1	Fiberglass Tape
TD-1	Snap Action Thermostat
TF115	Ambient Sensing Thermostat
TRF115	Line Sensing Thermostat

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or Improperly installed, and to comply with National Electric Code (IEC) Article 427.22 requirements, agency certifications, and local codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Ground fault protection is the responsibility of the end user and should be installed by a certified electrician. Note: Not all accessories are listed. See catalog for additional listings.

			waxiim		int Lengt				
Sample Heaters	0 Ft.	50 Ft.	100 Ft.	150 Ft.	200 Ft.	250 Ft.	300 Ft.	400 Ft.	500 Ft.
FEP-M 3-1	3.00	2.98	2.94	2.86	2.77	2.65	2.52	2.20	1.90
FEP-M 5-1	5.00	4.98	4.83	4.63	4.37	4.08	3.75	_	—
FEP-M 7-1	7.00	6.92	6.68	6.30	5.83	5.29	4.74	_	—
FEP-M 3-2	3.00	3.00	2.99	2.98	2.96	2.94	2.91	2.85	2.77
FEP-M 7-2	7.00	6.98	6.92	6.81	6.68	6.50	6.30	5.83	—
FEP-M 3-277	3.00	3.00	2.99	2.99	2.98	2.96	2.95	2.91	2.86
FEP-M 7-277	7.00	6.95	6.95	6.88	6.79	6.68	6.55	6.23	5.85

Maurine Cinevit I an ath

Note: Dashed line indicates drop off exceeds output minimums or amperage exceeds conductor limitations.

Canyon Lake, TX 78133 800-755-7602 TAD & Associates, Inc. P.O. Box 2170

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Example (Configuration	FEP-LV 5-1 TC						
FEP-LV	Watts/FootVoltage3,5,71=12V		Braid/Jacket	Weight/1,000'				
			TC=Tinned Copper	40 Lbs.				
	_	2=24V	NP=Nickel Plated Copper	42 Lbs.				
T Rating	T-3		TCOJ=Fluoropolymer Jacket	50 Lbs.				

Note: AC or DC voltages are permissible depending on power source. Custom outputs available upon review/approval. 500 Ft. minimum order.

	Output at Alternate Voltag							
Typical Heaters	12VDC	24VDC						
FEP-LV 3-1	3.0	12.0						
FEP-LV 3-2	0.75	3.0						
FEP-LV 5-1	5.0	444						
FEP-LV 5-2	1.2 5	5.0						
FEP-LV 7-1	2.1	7/-///						
FEP-LV 7-2	1.75	7.0						

imminent or no appreciable output.

	Accessories
PL-1M	Power Connection Kit
EC-M	End Termination Kit
ESK-14	Inline Splice Kit
тѕк-14	Tee Splice Kit
AL-1	Aluminum Tape
FG-1	Fiberglass Tape

Note: Not all accessories are listed. See catalog for additional listings.

		Maximum Circuit Length							
Sample Heaters	0 Ft.	5 Ft.	10 Ft.	15 Ft.	20 Ft.	25 Ft.	30 Ft.	35 Ft.	40 Ft.
FEP-LV 3-1	3.0	2.95	2.84	2.66	2.45	2.21	1.96		f /- /
FEP-LV 3-2	3.0	2.99	2.96	2.91	2.84	2.78	2.67	2.57	2.46
FEP-LV 5-1	5.0	4.98	4.65	4.19	3.65	<i>†/-/+</i>	+		///
FEP-LV 5-2	5.0	4.96	4.87	4.75	4.60	4.37	4.16	3.89	3.60
FEP-LV 7-1	7.0	6.76	6.16	5.36	4.48				<u>///</u>
FEP-LV 7-2	7.0	6.94	6.78	6.53	6.20	5.11	5.4	4.96	4.52

Note: Dashed line indicates drop off exceeds output minimums or amperage exceeds conductor limitations.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

SM-C snow melting cable is a constant wattage, parallelresistance electric heater that provides constant power output along the entire length of cable. SM-C snow melting cable is constructed of 12 AWG bright copper buss wires which allow for exceptionally long circuit lengths. The fluoropolymer insulation protects the cable from high exposure temperatures which makes it ideal for all asphalt installations. It also sufficiently protects the cable during installation and when encapsulated in concrete/asphalt.

Unlike other snow melting brands on the market that use low temperature PVC for insulation SM-C cables offer extreme durability, ruggedness, and withstands the harshest conditions. SM-C cables offers mineral insulated type longevity for less than leading brand snow melting mats. The quality of SM-C cable is unparalleled and offers much more than typical mats. SM-C cables conform to any type area to be traced. Simply spool off cable, attach to mesh and terminate. No need for distributors to stock or order 15-20 different mat sizes.

SM-C cables generate 45W/Ft.² on 8" centers and can be spaced as far apart as 10" for an efficient radiating pattern that eliminates ice-ridging or striping of un-melted snow/ice. SM-C cables can be paired with any number of mechanical, electronic snow melting controls for an energy efficient, reliable system. SM-C snow melting cables can be used in all direct burial concrete applications where cable is 1-1/2"-2" below grade. SM-C cable is ideally suited for all asphalt installations where high exposure temperature is a concern. Most mat heaters, snow melting cables cannot withstand asphalt application temperatures which result in cable destruction or degraded system performance due to weakened dielectic. This is because other manufacturers use low cost insulating materials in their construction. SM-C cables can be used in all classes of snow melting!

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Example Co	nfiguration	SM-24C			
SM-C	Vo	ltage	Weight/Lbs.		
	12=120V	27=277V	500′=55		
	28=208V	37=347V	1,000'=110		
	22=220V	48=480V	1,500'=165		
	24=240V		A FUSICA		

Note: Standard put-ups 500', 1,000', 1,500'. 120-347V/30 zones. 480V/48" zones. Min. order 500'.

Circuit Length Vs. Breaker Sizing

Voltage	Table 4 SM-C Circuit Lengths vs. Breaker Sizing (P)									
	15A (30)	20A (29)	30A (28)	40A (26)	50A (24)					
208VAC	80	110	170	230	300					
240VAC	95	130	195	270	350					
277VAC	110	150	230	310	400					

Note: P=Heating cable output at the end-of-circuit. Determine spacing with these outputs. Circuit lengths are based on 20% breaker de-rating per National Electric Code.

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with **National Electric Code (NEC) Article 427.22** requirements, agency certifications, and local codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Ground fault protection is the responsibility of the end user and should be installed by a certified electrician.

Output at Alternate Voltages

Typical Heaters	208 VAC	240 VAC	277 VAC		
SM-28C	30.0	39.9			
SM-24C	22.5	30.0	39.9		
SM-27C	16.9	22.5	30.0		

Note: Dashed lined indicates cable failure imminent. Outputs above 30W/Ft. not recommended as will gradually lead to diminished performance/cable failure.

Accessories
Termination Kit for SM-C
Splice Kit for SM-C
Cable Ties (50/Pack)
Power Connection Kit for SM
Multi-Entry Kit for SM
Snow Melting Control 10A
Snow Melting Control 35A
Star Frank

Note: Not all accessories are listed. See catalog for additional listings.

	5.200		37	Maximum Circuit Length				4				
Heaters	0 Ft.	50 Ft.	100 Ft.	150 Ft.	200 Ft.	250 Ft.	300 Ft.	350 Ft.	400 Ft.	500 Ft.	600 Ft.	650 Ft.
SM-12C	30.0	29.35	27.59	25.00	-	12 - N		-	_	-	-	10
SM-28C	30.0	29.82	29.20	28.21	26.92	25.39	23.69	-	—	_	-	
SM-22C	30.0	29.79	29.23	28.35	27.18	25.79	24.22	-	—	19 <u>-</u> 19	_	—
SM-24C	30.0	29.83	29.37	28.62	27.62	26.41	25.04	23.55	—	<u> </u>	_	—
SM-27C	30.0	<mark>29</mark> .88	29.55	28.95	28.18	27.24	26.15	24.95	23.66	19 <u>44</u> - 1	_	—
SM-37C	30.0	29.92	29.69	29.32	28.82	28.19	27.46	26.62	25.72	23.69	_	—
SM-48C	30.0	29.97	29.89	29.78	29.61	29.34	29.13	28.82	28.48	27.68	26.75	26.24

Note: Circuit lengths based on 50A breaker with 20% de-rating. Dashed line indicates drop off exceeds output minimums or amperage exceeds breaker safety envelope. To determine circuit lengths using smaller breaker sizes interpolate from chart and de-rate breaker by 20%.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

heat tracing specialists

5

LOW TEMPERATURE SELF-REGULATING

1.

2. 3.

4.

5.

16 AWG Buss Wires Conductive Core Polyolefin Jacket Tinned Copper Braid Optional Overjacket

Applications

Description

3

TSL low temperature self-regulating heater cable regulates it's heat output throughout the entire length of the circuit in response to ambient temperature changes. The self-regulating core increases its heat output as the ambient temperature drops; and decreases its output as the temperature rises. TSL self-regulating heater cables are constructed of industrial grade materials and are approved for use in Division 1* & 2 hazardous areas. TSL heater cables can maintain temperatures up to 150°F and have an intermittent exposure temperature of 185°F when energized. The optional thermoplastic R jacket offers corrosion resistance against certain inorganic chemicals, while the fluoropolymer T jacket protects the cable from both organic and inorganic chemicals. Either jacket offers exceptional protection against impact damage, abrasion and wet environments. As with all parallel type heater cables TSL can be cut to length in the field using standard electrical tools and will not overheat or burnout when overlapped.

TSL self-regulating heater cables provide freeze protection and process temperature maintenance for fluid transport and storage systems. TSL self-regulating heater cables are also ideal for roof & gutter, snow-melting/de-icing, cryogenic, fire suppression, domestic hot-water and various other applications. TSL cables are also safe for use on plastic pipes up to 5 W/Ft.*

* Use of conductive media such as foil tapes and heat transfer mastic highly recommended.

Approvals Factory Mutual: Ordinary locations Hazardous locations Class 1 Div. 1* & 2 (Groups B, C, D) Class 2 Div. 2 (Groups F, G) Class 3 Div. 1* & 2 CSA: Ordinary locations 2E, 3(A, B, C), 5(A, B) Hazardous locations Class 1 Div. 1* & 2 (Groups A, B, C, D) Class 2 Div. 1* & 2 (Groups E, F, G) Class 3 Div. 1* & 2 UL: Roof & Gutter Hot Water Maintenance Note: For heater cable applications refer to National Electric Code Article 427

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Exan	nple Configuration		TSL 8-1 R	5		
TSL	Wattage	Voltage	Braid/Jacket	Weight/1,000'		
*HTSL	3, 5, 8, 10	1=120V	C=Tinned Copper Braid	80 Lbs.		
T Rating	T-6 (3, 5, 8 W) T-5 (10	2=240V	R=Rubber Jacket	100 Lbs.		
			T=Fluoropolymer Jacket	90 Lbs.		

* HTSL cables must be configured with a T jacket by default. Factory Mutual requires criteria form to be completed before ordering HTSL. T rating per 1999 NEC Table 500-5(d).

Accessories

EC-1SR	End Termination Kit
ESK-14	Inline Splice Kit (14AWG)
TSK-14	Tee Splice Kit (14AWG)
AL-1	Aluminum Tape
FG-1	Fiberglass Tape
TD-1	Snap Action Thermostat
TF115	Ambient Sensing Thermostat
TRF115	Line Sensing Thermostat

Note: Not all accessories are listed. See catalog for additional listings.

Thermal Output Ratings 12 TSL 10 10 Power Output (W/Ft.) 4 9 % TSL 8 TSL 5 TSL 3 2 50 0 70 90 110 130 150 Pipe Temperature (°F)

Output at Alternate Voltages

Typical Heaters	208 VAC	220 VAC	240 VAC	277 VAC
TSL 3-2	2.25	2.65	3.00	3.84
TSL 5-2	4.30	4.67	5.00	5.80
TSL 8-2	7.28	7.66	8.00	8.80
TSL 10-2	9.30	9.67	10.0	10 <mark>.8</mark>

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with National Electric Code (NEC) Article 427.22 requirements, agency certifications, and local codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Ground fault protection is the responsibility of the end user and should be installed by a certified electrician.

Typical 50°F Start-Up (Ft.)			0°F Start-Up (Ft.)				-20°F Start-Up (Ft.)					
Heaters	15A	20A	30A	40A	15A	20A	30A	40A	15A	20A	30A	40A
TSL 3-1	300	NR	NR	NR	200	270	330	NR	180	230	330	NR
TSL 3-2	660	NR	NR	NR	410	560	660	NR	360	480	660	NR
TSL 5-1	230	270	NR	NR	150	200	270	NR	130	175	260	270
TSL 5-2	460	540	NR	NR	300	400	540	NR	260	345	520	540
TSL 8-1	150	200	210	NR	95	125	190	210	85	100	170	210
TSL 8-2	295	390	420	NR	195	250	375	420	170	225	340	420
TSL 10-1	115	150	180	NR	70	95	145	180	60	85	120	16
TSL 10-2	230	305	360	NR	150	200	300	360	130	175	260	36

Maximum Circuit Length vs. Breaker Sizing

NR= Not Required. Maximum circuit length has been achieved using smaller size breaker.

P.O. Box 2170

TAD & Associates, Inc.

TSL-06082016

Canyon Lake, TX 78133 800-755-7602

©2016 TAD & Associates, Inc.

heat tracing specialists

5

MEDIUM TEMPERATURE SELF-REGULATING

16 AWG Buss Wires Conductive Core Fluoropolymer Jacket Tinned Copper Braid Optional Overjacket

1.

2.

3.

4.

5.

Heat Trac

Description

3

TSLm medium temperature self-regulating heater cable regulates it's heat output throughout the entire length of the circuit in response to ambient temperature changes. The selfregulating core increases its heat output as the ambient temperature drops; and decreases its output as the temperature rises. TSLm self-regulating heater cables are constructed of industrial grade materials and are approved for use in Division 1* & 2 hazardous areas. TSLm heater cables can maintain temperatures up to 250°F and have an intermittent exposure temperature of 366°F when energized. The optional fluoropolymer T jacket offers corrosion resistance against organic & inorganic chemicals and provides an extra layer of protection from impact & abrasion. TSLm cables can also withstand steam purging temperatures up to 150PSIG saturated on process lines. As with all parallel type heater cables, TSLm can be cut to length in the field using standard electrical tools and will not overheat or burnout when overlapped.

TSLm self-regulating heater cables provide freeze protection and process temperature maintenance for fluid transport and storage systems. TSLm heater cables are also beneficial for use where periodic cleaning of process lines is performed and various other applications requiring high heat delivery.

Applications

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Example Co	onfiguration		TSLm 15-1 T	
TSLm	Wattage	Voltage	Braid/Jacket	Weight/1,000'
* HTSLm	5, 10, 15	1=120V	C=Tinned Copper Braid	95 Lbs.
T Rating	T-3	2=240V	T=Fluoropolymer Jacket	110 Lbs.

* HTSLm cables must be configured with a T jacket by defaut. Factory Mutual requires criteria form to be completed before ordering HTSLm. T rating per 1999 NEC Table 500 -5(d).

Accessories

PL-1SR	Power Connection Kit
EC-1SR	End Termination Kit
ESK-14	Inline Splice Kit (14AWG)
TSK-14	Tee Splice Kit (14AWG)
FG-3	Fiberglass Tape (400°F)
TF115	Ambient Sensing Thermostat
TRF115	Line Sensing Thermostat
A419	Programmable Thermostat

Note: Not all accessories are listed. See catalog for additional listings.

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with National Electric Code (NEC) Article 427.22 requirements, agency certifications, and local codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Ground fault protection is the responsibility of the end user and should be installed by a certified electrician.

Thermal Output Ratings 20 TSLm 15 16 Power Output (W/Ft.) 8 5 TSLm 10 TSLm 5 4 25 150 200 250 50 100 0 Pipe Temperature (°F)

Output at Alternate Voltages

Typical Heaters	208 VAC	220 VAC	240 VAC	277 VAC
TSLm 5-2	3.90	4.43	5.00	6.25
TSLm 10-2	8.60	9.40	10.0	11.6
TSLm 15-2	13.8	14.2	15.0	16.3

Maximum Circuit Length vs. Breaker Sizing

Turind	50°F Start-Up (Ft.)					0°E Start-Up (Et.)				-40°F Start-Up (Ft.)			
Heaters	15A	20A	30A	40A	15A	20A	30A	40A	15A	20A	30A	, 40A	
TSLm 5-1	150	200	240	NR	135	180	220	NR	130	170	210	NR	
TSLm 5-2	250	330	480	NR	230	305	440	NR	220	295	420	NR	
TSLm 10-1	90	120	180	NR	85	110	165	NR	80	105	160	NR	
TSLm 10-2	140	190	280	NR	130	175	260	NR	125	170	250	NR	
TSLm 15-1	70	90	130	NR	65	85	125	NR	60	80	120	NR	
TSLm 15-2	100	135	200	NR	95	125	185	NR	90	120	180	NR	
									•				

NR= Not Required. Maximum circuit length has been achieved using smaller size breaker.

TSLm-06292016

TA

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Exam	ple Configuration		TSLh 15-1 T						
TSLh	Wattage	Voltage	Braid/Jacket	Weight/1,000'					
* HTSLh	5, 10, 15, 20, 25, 30	1=120V	C=Tinned Copper Braid	85 Lbs.					
T Rating	T-2C	2=240V	T=Fluoropolymer Jacket	100 Lbs.					

* HTSLh cables must be configured with a T jacket by default. Factory Mutual requires criteria form to be completed before ordering HTSLh. T rating per 1999 NEC Table 500-5(d).

Accessories

PC-1SR	Power Connection Kit
EC-SR	End Termination Kit
ESK-14	Inline Splice Kit (14AWG)
TSK-14	Tee Splice Kit (14AWG)
FG-3	Fiberglass Tape (400°F)
TF115	Ambient Sensing Thermostat
TRF115	Line Sensing Thermostat
A419	Programmable Thermostat

Note: Not all accessories are listed. See catalog for additional

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with National Electric Code (NEC) Article 427.22 requirements, agency certifications, and local codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Ground fault protection is the responsibility of the end user and should be installed by a certified electrician.

Output at Alternate Voltages

		1	1	
Typical Heaters	208 VAC	220 VAC	240 VAC	277 VAC
TSLh 10-2	8.80	9.30	10.0	11.4
TSLh 20-2	18.8	19.5	20.0	21.6
TSLh 25-2	24.1	24.7	25.0	26.1
TSLh 30-2	29.7	29.9	30.0	30.3

Typical		50°F Star	t-Up (Ft.)			0°F Star	t-Up (Ft.)			-40°F Sta	rt-Up (Ft.)
Heaters	15A	20A	30A	40A	15A	20A	30A	40A	15A	20A	30A	40A
TSLh 5-1	180	240	335	NR	165	220	330	NR	150	200	300	NR
TSLh 5-2	360	480	540	NR	325	430	540	NR	290	385	540	NR
TSLh 10-1	120	160	180	NR	105	140	180	NR	90	120	180	NR
TSLh 10-2	240	320	360	NR	230	305	360	NR	225	300	360	NR
TSLh 15-1	80	105	135	NR	70	90	135	NR	60	80	120	NR
TSLh 15-2	160	210	270	NR	140	185	270	NR	120	160	240	NR
TSLh 20-1	60	90	120	NR	55	70	110	NR	50	65	120	NR
TSLh 20-2	115	150	230	NR	110	145	220	NR	105	140	210	NR
TSLh 25-1	45	60	85	NR	40	50	80	NR	40	50	80	NR
TSLh 25-2	90	120	170	NR	80	100	160	NR	80	100	160	NR
TSLh 30-1	40	50	70	NR	35	45	70	NR	35	45	70	NR
TSLh 30-2	80	100	140	NR	70	90	140	NR	70	90	140	NR

NR= Not Required. Maximum circuit length has been achieved using smaller size breaker.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

©2016 TAD & Associates, Inc.

TSLh-06292016

output throughout the entire length of the circuit in response to ambient temperature changes. The self-regulating core increases its heat output as the ambient temperature drops; and decreases its output as the temperature rises. RG roof & gutter heating cables are constructed of industrial grade materials and are intended for use in roof & gutter and pipe tracing applications. RG cables can maintain temperatures up to 150°F and have an intermittent exposure temperature of 185°F when energized. RG heating cables come in 8W and 10W/Ft. configurations for those areas that experience heavy snowfall and require additional heating to maintain proper roof drainage. RG8 has the ability to produce 13-14 W/Ft. in snow/ ice conditions while RG10 has the ability to generate 14-17 W/ Ft. The standard polyolefin overjacket protects the ground braid from impact & abrasion and has built-in UV inhibitors to prevent degradation of inuslating materials from continuous sun exposure. Due to their construction, RG heating cables will outlast economy/commercial grade roof & gutter cables up to 4X as long thereby reducing replacement costs. When combined with snow melting controllers, RG heating cables can save users up to 80% on utility costs. RG self-regulating heater cables can be cut to length in the field and will not overheat or burnout when overlapped.

RG self-regulating heater cables are ideal for roof & gutter deicing and pipe-tracing. RG heating cables also provide freeze protection for fluid transport and storage systems.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Exar	nple Configuration		RG81	
RG	Wattage	Voltage	Braid/Jacket	Weight/1,000'
	8, 10	1=120V	R= Rubber Jacket (Std.)	100 Lbs.
T Rating	T-6 (8 W) T-5 (10 W)	2=240V	T=Fluoropolymer Jacket*	90 Lbs.

T rating per 1999 NEC Table 500-5(d). 240 for use with 208V-277V. See Output @ Alternate Voltage chart below for true output. Optional fluoropolymer jacket available upon request.*

Accessories

RGPK	Power Connection Kit
SCK-2	Power Termination Kit
SCK-2-E	Termination Kit with End Seal
RCK-1	Roof Clips (10/Pack)
RDK-1	Downspout Hanger
RSD 4.5	Snow/Moisture Sensor 35A
AIC-4	Snow-Melting Controller 16A
TF115	Ambient Sensing Thermostat
TRF115	Line Sensing Thermostat

Note: Not all accessories are listed. See catalog for additional listings.

Output at Alternate Voltages

Typical Heaters	208 VAC	220 VAC	240 VAC	277 VAC
RG 82	7.28	7.66	8.00	8.80
RG 102	9.30	9.67	10.0	10.8

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with **National Electric Code** (NEC) Article 427.22 requirements, agency certifications, and local codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Ground fault protection is the responsibility of the end user and should be installed by a certified electrician.

			Т	her	mal	Out	put	Rat	ting	S		
16												
14	RG	10		RC RC	i8 outµ i10 ou	out in . tput ir	snow n snow	/ice 1 w/ice	3-14 14-12	N/Ft. W/Ft	@ 32 . @ 3	°F 2°F
12	RG 8	3			199							
0							21					
8			200									
6												
0 0		3	о	50) mhian	7(t Tom))	9	0	11	0	

Maximum Circuit Length vs. Breaker Sizing

						100		PROPERTY D		and the second second	AND DO THE PLANE	
Typical	50°F Start-Up (Ft.)				0°F Start-Up (Ft.)			-20°F Start-Up (Ft.)				
Heaters	15A	20A	30A	40A	15A	20A	30A	40A	15A	20A	30A	40A
RG 81	150	200	210	NR	95	125	190	210	85	100	170	210
RG 82	295	390	420	NR	195	250	375	420	170	225	340	420
RG 101	115	150	180	NR	70	95	145	180	60	85	120	165
RG 102	230	305	360	NR	150	200	300	360	130	175	260	360

NR= *Not Required. Maximum circuit length has been achieved using smaller size breaker.*

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

heat tracing specialists

Description

5

FLV low voltage self-regulating heater cables are designed to operate off low voltage power sources. FLV heater cable can be used for freeze protection and low process temperature in various applications.

FLV is ATEX approved for use in class 1 division 2 areas. FLV heater cables can maintain temperatures up to 150°F and have an intermittent exposure temperature of 185°F when deenergized. The standard thermoplastic R jacket offers corrosion resistance against certain inorganic chemicals, while the fluoropolymer T jacket protects the cable from both organic and inorganic chemicals. Either jacket offers exceptional protection against impact damage, abrasion and wet environments. As with all parallel type heater cables FLV can be cut to length in the field using standard electrical tools and will not overheat or burnout when overlapped. FLV self-regulating heater cables provide freeze protection and low temperature process for fluid transport and storage systems. FLV self-regulating heater cables are also ideal for low surface area roof & gutter, snow-melting/de-icing and various other applications where normal power requirements are inaccessible due to location.

Applications

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Example (Configuration	FLV 5-1 R					
FLV	FLV Wattage Voltage		Braid/Jacket	Weight/1,000'			
	3, 5, 9*	1=12VAC/VDC	R=Rubber Jacket	67 Lbs.			
T Rating	T Rating T-6 2=24VAC/VDC		T=Fluoropolymer Jacket	74 Lbs.			

* FLV 9 used for special applications only. For details of circuit lengths and startup currents contact TAD & Associates, Inc. T rating per 1999 NEC Table 500-5(d).

Accessories

PL-1SR	Power Connection Kit
EC-1SR	End Termination Kit
ESK-SR	Inline Splice Kit (14AWG)
TSK-SR	Tee Splice Kit (14AWG)
AL-1	Aluminum Tape
FG-1	Fiberglass Tape
TD-1	Snap Action Thermostat
TF115	Ambient Sensing Thermostat
TRF115	Line Sensing Thermostat

Note: Not all accessories are listed. See catalog for additional listings.

Maximum Circuit Length vs. Breaker Sizing

Typical	40°F Start-Up (Ft.)			0°F Start-Up (Ft.)				-40°F Start-Up (Ft.)				
Heaters	6A	10A	16A	20A	6A	10A	16A	20A	6A	10A	16A	20A
FLV 3-12	13	23	32	(/ 9/	16	26	/ <i>H</i> /	6	13	19	//
FLV 3-24	26	46	65	17	19	32	52	<i>∳</i> //	13	26	39	[/-/
FLV 5-12	9/	16	26	//-//	9	13	23	[/-/]	6	13	19	/ - /
FLV 5-24	19	32	52	(Ah	19	- 26	45	[+]	13	26	39	
FLV 9-12	//-/	//-/	////	14/	177	1/7/	///	/-/ /	-7	ff	/1=/-	1+1
FLV 9-24	$/ \neq \uparrow$	$\neq \neq$		++	44	[]-[///	141	/-//	/ /_ /	1//	14

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Examp	ole Configuration	SM2-B	
SM	Voltage	Jacket (inches) +/-0.5	Weight/1,000'
	2=208V-277V	B=Rubber Jacket (.60" x .256")	127 Lbs.
	3=347V	A=Aluminum Jacket (.59" x .24")	122 Lbs.

SMA replaces braid and overjacket with extruded aluminum, offering greater mechanical protection when required. Verify with local codes for use in concrete.

Thermal Output Ratings 35.0 33.5 32.0 Power Output (W/Ft.) 30.4 28.9 27.4 25.9 24.3 22.8 21.3 14 23 32 41 50 59 68 Surface Temperature (°F)

Note: Not all accessories are listed. See catalog for additional listings.

To minimize the danger of fire from sustained electrical arcing if the heating cable is damaged or improperly installed, and to comply with National Electric Code (NEC) Article 427.22 requirements, agency certifications, and local codes, ground-fault equipment protection must be used on each heating cable branch circuit. Arcing may not be stopped by conventional circuit protection. Ground fault protection is the responsibility of the end user and should be installed by a certified electrician.

Output at Alternate Voltages

Typical Heaters	208 VAC	240 VAC	277 VAC
SM2-B	26.88 (88)	28.65 (94)	29.58 (97)

Note: Output changes with applied voltage. (W/m)

Output Multiplying Factor

For Burial In:	Power Output Multiplying Factor
Sand (Wet)	W/Ft. in concrete x 0.9
Metal Conduit	W/Ft. in concrete x 0.4

Circuit Length vs. Breaker Sizing

The following graph indicates the cable performance when buried in concrete. For other conditions, refer to the Factors Table shown

JEIVICE						
Voltage	15A	20A	30A*	40A*		
208VAC	90 (27)	120 (36)	180 (54)	240 (73)		
240VAC	100 (30)	130 (39)	200 (61)	260 (79)		
277VAC	110 (33)	145 (44)	220 (67)	290 (88)		

Note: Breaker not to exceed 50A. * In order to achieve circuit length both cable ends MUST be powered. For single power point refer to 20A circuit length. (meters)

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

below.

yield desired effect. Recalculate using formula above to determine exact output and whether the result is favorable and will not impose any safety or damage potential. No more than 4 W/Ft. is permissible on PVC and polyethylene pipe. Some design complications may arise under certain circumstances due to variables, however there are workarounds such as transformers.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Ехатр	le Configuratio	on			MIS	S-KN142L-AN-1	00-03-С1-Е		
MISS-KN	Conduct	or Form	Hot Section	Cold Sec	tion	Optio	ns	Op	otions Continued
200°F	Table 2	AN	See Notes	.5′ - 40′ Ex	кр. С1=	1/2″ Reversed (Gland	P=PVC Jack	keted Cold Section
		BN			C2=	3/4" Reversed (Gland	U=NEMA 7	' Termination
		CN			E=P	Iller-Eve End		X=Other. S	pecifv
						lass Wranned	Hot Section		
ota: Hot s	oction longth i	c dependent o	n covoral factor	, including vo		a output condu	ictor ampara	a a	
JIE. 1101 S		s dependent of	i several juctors		Jiluge, cubi		ictor, umperu	ye.	
_				Co	onstructio	n			
-								AN F	Form Factor
-			Two Conductor						
				BN	Form Factor				
/									
	, mining		Single Conducto	or					
_									
/						Single Conduct	tor Loop	CN Form Factor	·)
	Cold Secti	on	Hot Section						
2	Cold Secti 300	ON Volt, 2 Conductor	Hot Section	600	Volt, 2 Conduc	tor	6	00 Volt, 1 Conducto	or
Table 2	Cold Secti 300	Volt, 2 Conductor KNXXXL	Hot Section	600 Size	Volt, 2 Conduc KNXXX	tor	6	00 Volt, 1 Conducto KN	or
Table 2	Cold Secti 300 Size	ON I Volt, 2 Conductor KNXXXL Ohms/Ft. 0.0458	O.D.	600 Size	Volt, 2 Conduc KNXXX Ohms/Ft.	0.D.	Size	00 Volt, 1 Conducto KN Ohms/Ft.	or 0.D.
Table 2	Cold Secti 300 Size 32SP4458 32SP4583	Volt, 2 Conductor KNXXXL Ohms/Ft. 0.0458 0.0583	0.D. 0.185 0.184	600 Size KN132 KN142	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15	tor 0.D. 0.265 0.245	6 Size KN101 KN111	00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04	or 0.D. 0.26 0.24
Table 2	Cold Secti 300 Size 32SP4458 32SP4583 32SP4734	On On Volt, 2 Conductor KNXXXL Ohms/Ft. 0.0458 0.0583 0.0734	O.D.	600 Size KN132 KN142 KN152	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2	tor 0.D. 0.265 0.245 0.245	5ize KN101 KN111 KN121	00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04 0.07	or 0.D. 0.26 0.24 0.20
Table 2	Cold Secti 300 Size 325P4458 325P4583 325P4734 KN132L	On On Volt, 2 Conductor KNXXXL Ohms/Ft. 0.0458 0.0583 0.0734 0.10 0.10	O.D.	600 Size KN132 KN142 KN142 62SQ3286	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286	tor 0.D. 0.265 0.245 0.245 0.246	6 Size KN101 KN111 KN121 KN141	00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04 0.07 0.10	or 0.D. 0.26 0.24 0.20 0.20
Table 2	Cold Section 3000 Size 32SP4458 32SP4583 32SP4734 KN132L KN142L	On On Volt, 2 Conductor KNXXXL Ohms/Ft. 0.0458 0.0583 0.0734 0.10 0.15	O.D.	600 Size KN132 KN142 KN152 62SQ3286 62SQ3505	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505	tor 0.D. 0.265 0.245 0.245 0.246 0.234	6 Size KN101 KN111 KN121 KN141 KN141 KN151	00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04 0.07 0.10 0.15	or 0.D. 0.26 0.24 0.20 0.20 0.19
Table 2	Cold Secti 300 Size 325P4458 325P4583 325P4734 KN132L KN142L KN142L KN152L	Volt, 2 Conductor Volt, 2 Conductor KNXXXL Ohms/Ft. 0.0458 0.0583 0.0734 0.10 0.15 0.2	O.D.	Size 600 Size KN132 KN142 KN152 625Q3286 625Q3505 KN182	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7	tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265	5ize KN101 KN111 KN121 KN141 KN151 KN161	00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04 0.07 0.10 0.15 0.20	or 0.D. 0.26 0.24 0.20 0.20 0.19 0.19
Table 2	Cold Secti 300 Size 32SP4458 32SP4583 32SP4734 KN132L KN142L KN152L KN162L	On On Volt, 2 Conductor KNXXXL Ohms/Ft. 0.0458 0.00458 0.0583 0.0734 0.10 0.15 0.2 0.3 0.3	O.D. O.185 0.184 0.184 0.180 0.160 0.146 0.215	Size KN132 KN142 KN152 62SQ3286 62SQ3505 KN182 62ST2115	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7 1.15	tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265 0.239	5ize KN101 KN111 KN121 KN141 KN151 KN161 KN171	00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04 0.07 0.10 0.15 0.20 0.30	or 0.D. 0.26 0.24 0.20 0.20 0.19 0.19 0.19
Table 2	Cold Secti 300 Size 1 32SP4458 1 32SP4583 2 32SP4734 1 KN132L 1 KN142L 1 KN152L 1 KN162L 1	On On Volt, 2 Conductor KNXXXL Ohms/Ft. 0.0458 0.00458 0.0734 0.010 0.15 0.2 0.3 0.5 0.5	O.D. O.185 0.185 0.184 0.184 0.184 0.180 0.160 0.146 0.215 0.196 0.196	Size 600 Size 1 KN132 1 KN142 1 KN152 1 62SQ3286 1 62SQ3505 1 KN182 1 62ST2115 1 KN222 1	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7 1.15 2.0	tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265 0.239 0.245	5ize KN101 KN111 KN121 KN141 KN151 KN161 KN171 KN191	00 Volt, 1 Conducto KN 0hms/Ft. 0.03 0.04 0.07 0.10 0.15 0.20 0.30 0.50	or 0.D. 0.26 0.24 0.20 0.20 0.19 0.19 0.19 0.18
Table 2	Cold Secti 300 Size 325P4458 3 325P4583 3 325P4734 4 KN132L 4 KN142L 4 KN152L 4 KN162L 4 KN172L 4	On On Volt, 2 Conductor No Nons/Ft. 0 0.0458 0 0.0734 0 0.10 0 0.15 0 0.2 0 0.3 0.5 0.7 0	O.D. O. 0.185 0. 0.184 0. 0.184 0. 0.180 0. 0.160 0. 0.196 0.	Size 600 Size KN132 KN142 KN152 62503286 62503505 KN182 62512115 KN222	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7 1.15 2.0 4.14	tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265 0.239 0.245 0.239	6 Size KN101 KN111 KN121 KN141 KN151 KN161 KN171 KN191 KN211	00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04 0.07 0.10 0.15 0.20 0.30 0.50 0.70	or 0.D. 0.26 0.24 0.20 0.20 0.19 0.19 0.19 0.18 0.17
Table 2	Cold Secti Size 32SP4458 32SP4583 32SP4734 KN132L KN142L KN152L KN162L KN172L KN182L KN192L	On On Volt, 2 Conductor N/XXXL Ohms/Ft. 0 0.0458 0 0.0583 0 0.10 0 0.15 0 0.2 0 0.3 0 0.5 0 0.7 1	O.D. O.185 0.185 0.184 0.184 0.180 0.160 0.146 0.215 0.196 0.160 0.196	Size KN132 KN142 KN152 62SQ3286 62SQ3505 KN182 62ST2115 KN222 62SA2414	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7 1.15 2.0 4.14 6.0	tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265 0.239 0.245 0.239 0.245 0.239 0.245	6 Size KN101 KN111 KN121 KN141 KN141 KN151 KN161 KN161 KN191 KN211 KN221	00 Volt, 1 Conducto KN 0.03 0.04 0.07 0.10 0.15 0.20 0.30 0.50 0.70 1.0	or 0.D. 0.26 0.24 0.20 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.17 0.17
Table 2	Cold Secti Size 325P4458 325P4583 325P4734 KN132L KN142L KN152L KN162L KN172L KN182L KN182L KN192L KN192L	On 2 Conductor Volt, 2 Conductor 0 Nors/Ft. 0 0.0458 0 0.0583 0 0.0734 0 0.10 0 0.15 0 0.2 0 0.3 0 0.7 1 1.0 2	Hot Section 0.D. 0.185 0.184 0.184 0.180 0.160 0.146 0.215 0.196 0.196 0.180	Size 600 Size 1 KN132 1 KN142 1 KN152 1 62503286 1 62503505 1 KN182 1 62512115 1 625A2414 1 KN252 1 625ZF2900 1	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7 1.15 2.0 4.14 6.0 9.0	tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265 0.239 0.245 0.239 0.245 0.239 0.215	5ize KN101 KN111 KN121 KN141 KN151 KN151 KN161 KN171 KN191 KN221 KN221 KN241	00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04 0.07 0.10 0.15 0.20 0.30 0.50 0.70 1.0 2.0	or 0.D. 0.26 0.24 0.20 0.20 0.19 0.19 0.19 0.19 0.18 0.17 0.17 0.16
Table 2	Cold Secti Size 32SP4458 32SP4583 32SP4734 KN132L KN142L KN152L KN162L KN182L KN192L KN192L KN222L	On Conductor Nole, 2 Conductor Conductor Ohms/Ft. 0 0.0458 0 0.0583 0 0.0734 0 0.15 0 0.2 0 0.3 0 0.7 1 1.0 2 2.0 4	Hot Section 0.D. 0.185 0.184 0.184 0.180 0.160 0.146 0.196 0.196 0.180 0.180 0.180	Size KN132 KN142 KN152 62SQ3286 62SQ3505 KN182 62ST2115 KN222 62SA2414 62SZF2900 KN292	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7 1.15 2.0 4.14 6.0 9.0 11.0	tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265 0.239 0.245 0.239 0.245 0.239 0.215 0.215 0.215	6 Size KN101 KN111 KN121 KN121 KN141 KN151 KN161 KN171 KN191 KN211 KN221 KN241	00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04 0.07 0.10 0.15 0.20 0.30 0.50 0.50 0.70 1.0 2.0	or 0.D. 0.26 0.24 0.20 0.20 0.19 0.19 0.19 0.19 0.18 0.17 0.17 0.16
Table 2	Cold Secti Size 32SP4583 32SP4734 KN132L KN152L KN162L KN172L KN162L KN172L KN182L KN192L KN192L KN192L KN192L KN192L	On Volt, 2 Conductor Not, 2 Conductor Note, 2 Conductor Ohms/Ft. 0 0.0458 0 0.0583 0 0.010 0 0.15 0 0.2 0 0.3 0 0.7 1 2.0 4 4.0 0	Hot Section 0.D. 0.185 0.184 0.184 0.180 0.160 0.146 0.196 0.196 0.180 0.146 0.196 0.196 0.135	Size Size KN132 KN142 KN152 62SQ3286 62SQ414 62SZF2900 KN292	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7 1.15 2.0 4.14 6.0 9.0 11.0	tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265 0.239 0.245 0.239 0.245 0.239 0.215 0.215 0.215	6 Size KN101 KN111 KN121 KN141 KN141 KN151 KN161 KN171 KN191 KN211 KN211 KN241	00 Volt, 1 Conducts KN 0hms/Ft. 0.03 0.04 0.07 0.10 0.15 0.20 0.30 0.50 0.50 0.70 1.0 2.0	or 0.D. 0.26 0.24 0.20 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.17 0.17 0.16
Table 2	Cold Secti Size 32SP4583 32SP4583 32SP4734 4 KN132L KN152L KN162L KN162L KN172L KN182L KN182L KN182L KN182L KN182L KN182L KN182L KN192L KN122L KN192L KN252L S2SF2900	On Image: Conductor KNXXXL Ohms/Ft. 0 0.0458 0 0.0583 0 0.0734 0 0.15 0 0.2 0 0.3 0 0.7 1 1.0 2 4.0 0 6.0 9	Hot Section 0.D. 0.185 0.184 0.184 0.180 0.160 0.146 0.196 0.180 0.180 0.146 0.196 0.146 0.135 0.140	Size KN132 KN142 KN142 G2SQ3286 G2SQ3285 G2SQ3286 G2SQ3286 G2SQ3286 G2SQ3286 G2SQ3286 G2SQ3286 G2SQ3286 G2SQ3286 G2SQ3286 KN182 G2ST2115 G2SQ2414 G2SZF2900 KN292 G2SQ286	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7 1.15 2.0 4.14 6.0 9.0 11.0	tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265 0.239 0.245 0.239 0.245 0.239 0.215 0.215 0.215	6 Size KN101 KN111 KN121 KN121 KN141 KN151 KN151 KN161 KN171 KN191 KN211 KN221 KN241	00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04 0.07 0.10 0.15 0.20 0.30 0.50 0.70 1.0 2.0	or 0.D. 0.26 0.24 0.20 0.20 0.19 0.19 0.19 0.19 0.18 0.17 0.17 0.16
Table 2	Cold Secti Size 32SP4458 32SP4583 32SP4734 KN132L KN142L KN152L KN162L KN162L KN162L KN12L KN12L KN162L	On Conductor Nole, 2 Conductor Conductor Ohms/Ft. 0 0.0458 0 0.0583 0 0.10 0 0.15 0 0.2 0 0.3 0 0.7 1 2.0 0 4.0 0 6.0 9 9.0 11.0	Hot Section 0.D. 0.185 0.184 0.184 0.180 0.160 0.146 0.196 0.196 0.180 0.146 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.130	Size KN132 KN132 KN152 625Q3286 625Q3505 KN182 625T2115 62SA2414 62SA2414 62SZF2900 KN222 62SZF2900 KN292	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7 1.15 2.0 4.14 6.0 9.0 11.0	tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265 0.239 0.245 0.239 0.245 0.239 0.215 0.215 0.215	6 Size KN101 KN111 KN121 KN121 KN141 KN151 KN161 KN171 KN191 KN211 KN221 KN241	00 Volt, 1 Conducto KN 0.03 0.04 0.07 0.10 0.15 0.20 0.30 0.50 0.70 1.0 2.0	or 0.D. 0.26 0.24 0.20 0.19 0.19 0.19 0.19 0.19 0.18 0.17 0.17 0.16
Table 2	Cold Section Size 32SP4583 32SP4758 32SP4734 KN132L KN152L KN162L KN172L KN162L KN172L KN162L KN162L <t< td=""><td>On Volt, 2 Conductor Nohrs/Ft. 0 0.0458 0 0.0583 0 0.0734 0 0.10 0 0.15 0 0.2 0 0.3 0 0.7 1 1.0 2 4.0 0 9.0 1 1.0 0</td><td>O.D. Image: Constraint of the section 0.185 0.184 0.184 0.180 0.180 0.160 0.146 0.196 0.196 0.196 0.180 0.196 0.196 0.196 0.135 0.140 0.130 0.130</td><td>Size Size KN132 KN142 KN152 62SQ3286 KN182 62SQ3286 KN222 62SA2414 62SZF2900 KN292 I MANDER I</td><td>Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7 1.15 2.0 4.14 6.0 9.0 11.0</td><td>tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265 0.239 0.245 0.239 0.245 0.239 0.215 0.215 0.215 0.215</td><td>6 Size KN101 KN111 KN121 KN141 KN141 KN151 KN161 KN161 KN171 KN211 KN211 KN211 KN241</td><td>00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04 0.07 0.10 0.15 0.20 0.30 0.50 0.70 1.0 2.0</td><td>or 0.D. 0.26 0.24 0.20 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.17 0.17 0.16</td></t<>	On Volt, 2 Conductor Nohrs/Ft. 0 0.0458 0 0.0583 0 0.0734 0 0.10 0 0.15 0 0.2 0 0.3 0 0.7 1 1.0 2 4.0 0 9.0 1 1.0 0	O.D. Image: Constraint of the section 0.185 0.184 0.184 0.180 0.180 0.160 0.146 0.196 0.196 0.196 0.180 0.196 0.196 0.196 0.135 0.140 0.130 0.130	Size Size KN132 KN142 KN152 62SQ3286 KN182 62SQ3286 KN222 62SA2414 62SZF2900 KN292 I MANDER I	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7 1.15 2.0 4.14 6.0 9.0 11.0	tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265 0.239 0.245 0.239 0.245 0.239 0.215 0.215 0.215 0.215	6 Size KN101 KN111 KN121 KN141 KN141 KN151 KN161 KN161 KN171 KN211 KN211 KN211 KN241	00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04 0.07 0.10 0.15 0.20 0.30 0.50 0.70 1.0 2.0	or 0.D. 0.26 0.24 0.20 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.17 0.17 0.16
Table 2	Cold Section Size 32SP4383 32SP47583 32SP4734 KN132L KN142L KN152L KN162L KN172L KN182L KN182L KN182L KN182L KN182L KN192L KN222L KN252L KN252L KN252L KN252L	On 2 Ohms/Ft. 0 0.0458 0 0.0583 0 0.0734 0 0.10 0 0.15 0 0.2 0 0.3 0 0.7 0 1.0 0 2.0 0 4.0 0 9.0 11.0 11.0 0	O.D. 0.185 0.185 0.184 0.180 0.180 0.160 0.146 0.196 0.196 0.180 0.146 0.135 0.146	Size 0 Size 1 KN132 0 KN142 0 KN152 0 62503286 0 62503505 0 KN182 0 62512115 0 62524214 0 625272900 0 KN292 0 62024 0 KN292 0 Constant 0 Con	Volt, 2 Conduc KNXXX Ohms/Ft. 0.10 0.15 0.2 0.286 0.505 0.7 1.15 2.0 4.14 6.0 9.0 11.0	tor 0.D. 0.265 0.245 0.245 0.246 0.234 0.265 0.239 0.245 0.239 0.245 0.239 0.215 0.215 0.215	6 Size KN101 KN111 KN121 KN121 KN141 KN151 KN151 KN161 KN171 KN191 KN211 KN221 KN241	00 Volt, 1 Conducto KN Ohms/Ft. 0.03 0.04 0.07 0.10 0.15 0.20 0.30 0.50 0.70 1.0 2.0	or 0.D. 0.26 0.24 0.20 0.20 0.19 0.19 0.19 0.19 0.18 0.17 0.17 0.16

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

	e Configuratio	on	1		MIS	S-K742-AN-12	5-03-C1-E			
۸ISS	Conduct	or Form	Hot Section	Cold Sectio	on	Optior	15	0	ptions Continu	ied
	Table 2	AN	See Notes	.5' - 40' Exp.	C1=1	/2" Reversed G	land	P=PVC Jac	keted Cold Sec	ction
		BN			C2=3	/4" Reversed G	land	U=NEMA	7 Termination	
		CN			E=Pu	ller-Eye End		X=Other, S	Specify	
					6-6	, ass Wranned H	lot Section		,	
					0-01					
e: Hot se	ection length is	s dependent o	n several factoi	rs including volt	age, cable	output, condu	ctor, ampera	ge.		
				Con	structio	2				
~								AN AN	Form Factor	
			Two Conducto	r						_
-										`
				BN FO	rm Factor					
			Sinale Conduct	or						
			5							
~						Single Conducto	or Loop	CN Form Facto	r	
	Cold Secti	on	Hot Section							
2	300	Volt, 2 Conductor		600 Vo	lt, 2 Conduct	tor	6	00 Volt, 1 Conduct	tor]
able	3/1	16" OD .07 Lbs/Ft.		5/16″	OD .22 Lbs/H	t.	3	3/16″ OD .07 Lbs/ł	Ft.	
ц	Size	Ohms/Ft.	Max Exp Temp°F	Size (Ohms/Ft.	Max Exp Temp°F	Size	Ohms/Ft.	Max Exp Temp°F	
	K556	.043*		B588	.0071*		K145	.0046*		
_	K658	.058*		B614	.0149*		К189	.0090*	600	
	K674	.074*		B627	.027*	600	K216	.0165*		
	K693	.093*	600	B640	.040*		К239	.039		
	K712	.117*		B670	.065		К250	.050		
	K715	.147*		B710	.104		К279	.079		
	K721	.213*		B715	.162		К310	.095		
	К732	.319		B720	.205		К316	.157	Constant of the second	
	К742	.416		B732	.325		К326	.260	2	
	K752	.520		B750	.500	1 000	К333	.330	1 000	
	K766	.660		B774	.735	1,000	К346	.457	1,000	
	K774	.740		B810	1.162		К372	.730		
	K810	1.00		B819	1.87		K412	1.17		
	K813	1.30		B830	2.97		K415	1.48		
	K818	1.80	1 000	B840	4.30		К423	2.36		
	K824	2.34	1,000	B859	5.98		К430	2.80		
	K830	2.96					K447	4.50		
	K838	3.70								68°F
	K846	4.72								s @
	K860	5.60								alue
	-	6.60								All v
	K866	0.00	1.1							
-	K866 K894	9.00								ote:

heat tracing specialists

115 Series

NEMA 4X THERMOSTAT

- Rugged weather resistant enclosure made of corrosion resistant materials for long life.
- Stainless steel remote bulb (TRF115) provides rapid response to temperature change.
- Low mass, high surface area of stainless steel coiled sensor (TF115) provides rapid response to temperature change.
- Large, readily visible dial with 0°F-120°F temperature range (TRF115) and 40°F-110°F (TF115).
- Multi-positional mounting offers flexibility in either new or existing installations.
- One control for both heating and cooling applications.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Description

The TRF115 line sensing & TF115 ambient sensing thermostats are NEMA 4X temperature controls. The TRF115 is intended mainly for process applications while the TF115 for freeze protection of pipes, vessels, hoppers, instrumentation, snowmelting, roof & gutter and other types of electric heat tracing applications. Both thermostats are perfectly suitable for both industrial and commercial applications and are approved for use in ordinary locations.

Installation

- Multi-positional mounting meets new or existing wiring needs.
- Insulated enclosure.
- All mounting holes are exterior to the enclosure.
- Easily removable knockouts in sides and top of enclosure.
- Large wiring compartment with watertight cover separated from thermostat compartment.
- May be cord or conduit connected.
- Pigtail leads for rapid, positive, electrical connection.

L2 OR NEUTRAL

	Electric	al Rating:	5		
		120VAC	208VA	240VAC	277VAC
Full Load Amps		16.0	12.0	10.0	-
Locked Rotor Amps		80.0	60.0	50.0	-
Non-Inductive Resistive Load	l Amps	25.0	25.0	22.0	5.00

Specifications

Thermostat	Туре	Range	Differential	Bulb Size	Capillary
TRF115	SPDT	0°F - 120°F	3°F	2 5/16" x 5/16"	5′
TF115	SPDT	40°F - 110°F	2.5°F	NA	NA

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

heat tracing specialists

A419

NEMA 4X ELECTRONIC THERMOSTAT

- Easy-to-read LCD displays the sensed temperature and control function status clearly and custom icons on the display indicate the control and system status at a glance.
- The temperature differential adjustment range allows precise (1°F or °C) temperature differential settings that are much tighter than electromechanical controls.
- The Adjustable Anti-Short Cycle Delay (0-12 minutes in 1minute increments) ensures that the output relay remains off for a user-set time delay and helps avoid hard starts, nuisance overload outages, and unnecessary equipment wear.
- The Noryl[®] high-impact thermoplastic type NEMA 4X enclosures allow watertight surface mount.
- Lockable front-panel touchpad allows easy setup and adjustment of the A419 control setpoint, differential, and other functions; a concealed jumper locks the touchpad.

Description

The A419 electronic temperature control is a single-stage, single -pole double-throw (SPDT), electronic temperature control. The control features a lockable, three button touchpad for setup and adjustment and an LCD which displays the sensed temperature and other control functions. A front panel LED indicates the output relay status. The control has a temperature range of - 30°F to 212°F.

The A419 control has both heating and cooling modes with adjustable setpoint and differential, an adjustable anti-short cycle delay, and a temperature offset function. The control provides remote sensing capability, and electronic accuracy in a NEMA 4X watertight and corrosion resistant enclosure.

Phone: 830.964.4435 Fax: 830.964.4441 http://www.tad-associates.com

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

	Specific	cations		Ord	ering Information	
Туре	Range	Differential	Sensor	Example Configuration	A419	Weight
SPDT	-30°F - 212°F	1°F - 30°F	6.5′ PTC	A419	NEMA 4X Digital Thermostat	1.0 Lbs
						•

Note: Sensor is for ambient or line sensing use.

Electrical Ratings

	120VAC	208VAC	240VAC	277VAC
Full Load Amps	16.0	9.20	8.00	6.90
Locked Rotor Amps	96.0	55.2	48.0	41.6
Non-Inductive Resistive Load Amps	15.0	10.0	10.0	8.70

PRESET SNAP-ACTION THERMOSTAT

Description		Construction
The TD-1 is a snap action style thermostat preset at 40°F that can be configured to measure surface temperature or ambient air temperature. The thermostat has two leads that break the L1 conductor on either a self-regulating or constant wattage heater cable while the neutral remains connected to the service lead in the junction box. The TD-1 is ideal for use in freeze protection applications and is intended for use with short circuit lengths not switching more than 80% of the thermostat's registered amperage.	•	SPST contact which opens on temperature rise. Bimetal disc is located at bottom of stainless steel cup for surface mount sensitivity. Epoxy seal provides weatherproof seal from -20°F to 221°F. The TD-1 provides a high quality, durable, long life temperature control preset to 40°F. Style No. 37T21 30907

	Ratings		
Resistive Amps	120VAC	240VAC	277VAC
UL Recognized	10.0	5.0	1.0
CSA Certified	8.3	5.0	_

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133 Phone: 830.964.4435 Fax: 830.964.4441 http://www.tad-associates.com

Controls

TD-1 Installation Options

Note: Older PL box shown.

Line Sensing

- Remove insulation from pipe and attach TD-1 to pipe wall to be heat traced.
- Secure TD-1 to pipe wall by passing tie wire through holes on TD-1 mounting bracket.
- Using a pair of pliers twist both ends of tie wire together until TD-1 is snug against pipe wall.
- Complete electrical connections and secure insulation.

- Ambient Sensing
- Locate two plastic retainers at the back of the PL-1 junction box (sold separately).
- Align both holes of TD-1 mounting bracket with plastic retainers in back of junction box and determine size.
- If needed, use a pair of pliers to gently squeeze edges of plastic retainers to slightly conform to holes on TD-1 mounting bracket.
- Gently apply pressure on both ends of TD-1 mounting bracket and snap onto plastic retainers.
- Ensure snug fit and apply a bead of silicone around plastic retainers and TD-1 mounting bracket.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

heat tracing specialists

121 Series NEMA 7 THERMOSTAT

- Class 1 Divisions 1 & 2, Groups B C & D
- Class 2 Divisions 1 & 2, Groups E F & G
- Class 3
- 25°F 325°F Range (E121)
- 15°F 140°F Range (B121)
- 3/4" NPT hub for electrical
- 304 SS Bulb/Capillary (E121), Immersion Stem (B121)
- NEMA 4X, 7, 9, IP66
- Internal Dial (Gasketed SS Tamper Resistant)

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Description

Controls

The 121 line of thermostats are explosion & weatherproof temperature controls housed in a NEMA 4X, 7 lightweight die cast aluminum enclosure. They're approved for use in Class I Div. 1 & 2 hazardous locations. The E121 line sensing thermostat is ideal for process temperature applications. The B121 ambient sensing thermostat has an immersion stem for sensing atmospheric temperatures and is ideal for freeze protection applications. Both thermostats are SPDT (Single Pole Double Throw) switches that offer a very dependable and accurate control for heat trace circuits in hazardous locations.

Specifications

Style	Switch Type	Range	Accuracy	Differential	Bulb Size	Capillary	Immersion Stem	Finish
E121	SPDT	25°F - 325°F	±1% Range	3°F - 6°F	10 1/2" x 3/8"	10′	NA	30455
B121	SPDT	15°F - 140°F	±1% Range	3°F - 6°F	NA	NA	9/16" x 2-11⁄16"	304SS

Electrical Ratings

Ratings	120V - 480V
Resistive Amps	22A

Ordering Information

Example Configuration	E121	Weight
E121	Line Sensing Thermostat	6.4 Lbs.
B121	Ambient Sensing Thermostat	6.6 Lbs.
Notes: 1660-13A12(E121), 2	1660-18912(B121)	

& SSOCIATES, INC.

heat tracing specialists

MasterTrace

MasterTrace Heat Tracing Systems are designed to be the very best in electrical heat trace control and monitoring for industrial applications.

ADVANTAGES

- Custom Engineered Control
 Panels
- Easy-To-Read Interface,2x16-Character Alphanumeric Display, Field or Remote Mounted
- Modbus Comm
- RS-485 Serial Port Connectivity
- TraceCheck Early Warning
 System
- Power Limiting
- Load Shedding
- Solid State or Mechanical Switching Units
- Facility Wide Windows Based Software Monitoring
- Links to PLC or DCS
- Custom Engineered Software Designs

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133 Custom engineered control panels designed to your specific requirements incorporate the unequaled quality and reliability of MasterTrace control modules.

The Best in Monitoring

MasterTrace Heat Tracing Systems maximize the performance and reliability of any electrical heat tracing application. Sensing all critical heat trace variables and using the advanced algorithms of its microprocessor, MasterTrace controllers warn you of potential problems before they become critical and maintain your heat trace system 24 hours a day, 365 days of the year.

MasterTrace controllers continuously monitor your heat tracing system and provides you with user-settable alarms for temperature, heater current and ground fault current, all independent of the trip levels. Your heat tracing system is critical to your plant operations so

MasterTrace Systems are designed to perform self-check monitoring on all RTD's and switches. To further ensure that your heat trace works when you need it, the TraceCheck feature periodically energizes and checks for alarm conditions on all dormant lines and latches onto alarm functions.

Phone: 830.964.4435 Fax: 830.964.4441 http://www.tad-associates.com

FEATURED BENEFITS

TraceCheck Early Warning

Alerts operators to problems even when the circuit is not in use.

Modbus_® Protocol

Allows easy interfacing with our MC-100 software or PLC and DCS systems.

Alarm Outputs Common alarm alerts users to problems.

Centralized Interfacing

No need to move around the plant. All variables are monitored at a single location.

Statistics Monitoring

Save energy by monitoring peak demand times.

Staggerstart

Limits initial start up power.

Proportional Control

Provides tight process temperature control.

Advanced Control

The advanced features of MasterTrace allow it to handle single-phase to three-phase heat trace applications with switch ratings up to 100A@ 600VAC. Integral user-settable ground fault trip protects your heat trace without costly ground fault breakers. The user-settable Ground Fault test function lets you know if Ground Fault monitoring is functioning properly. RTD inputs (dual RTD inputs available) have a user-settable fail-safe strategy. A Master Override input allows for external control for load-shedding or ambient control.

Friendly Interfacing

MasterTrace interfaces make interrogation and programming easy for all MasterTrace controllers.

Two choices are available:

- Local Interface (MI100)
- Remote Interface (MR100)

ML100 communicates with a single controller of up to 10 circuits and up to five feet away. MR100 communicates with multiple controllers, up to 30 controllers or 300 circuits, to a maximum of 4,000 feet without repeaters.

Energy Management

Operators have many reasons to reduce their environmental impact yet may be missing substantial opportunities to become greener without making significant investments. Opportunities for energy savings are in, perhaps, the most obvious of places – the plant. Monitoring energy and energy costs are the starting points and MasterTrace provides you with the tools through the measured values of: Heater Utilization, Power Consumption (MWh), and Operating Costs (\$0 to \$1,000,000).

🛋 мс10	0 for Internet				
File View	Tools Help				
? 3	S 2 m L 😫				Alarmi
			Heater Se	lect	
	COM 1	• M	odule 1	▼ Heater 1 ▼	
		Previous	Heater	Next Heater	
			·	•	
Г		U.	Heater Sstp	points	-
		Не	-HeaterSstp sater Nam	ne: N/à	-
	Heater Enabled	He	-Heater Satp sater Nar	xoints n.e: N∕A Power Limit	
	Heater Enabled Heater Setpoint	He	Heater Satp sater Nar	soints nue : N∕à Power Limit High Current Trip	
	Heater Enabled Heater Setpoint Low Temperature Alarm	He	Heater Satp sater Kar	ixints Power Limit High Current Trip Ground Fault Trip	-
	Heater Enabled Heater Setpoint Low Temperature Alarm High Temperature Alarm	He	- Heater Satp sater Faz	ne: N/A Power Limit High Current Trip Ground Fault Alarm	
	Heater Enabled Heater Setpoint Low Temperature Alarm High Temperature Alarm	He	- Heater Satp	eints Power Limit Power Limit High Current Trip Ground Fault Trip Ground Fault Alam TraceCheck Cycle Time	•
	Heater Enabled Heater Setpoint Low Temperature Alarm High Temperature Alarm High Current Alarm	He	Heater Sate sater Far	Power Limit Power Limit High Currert Trip Ground Fault Trip Ground Fault Alarm TraceCheck Cycle Time Heater Str Votage	
	Heater Enabled Heater Setpoint Low Temperature Alarm High Temperature Alarm Low Current Alarm High Current Alarm	He	Heater Sate sater Kar	Are: N/A Power Limit High Current Trip Ground Fault Trip Ground Fault Alam TraceCheck Cycle Time Heater Set Vottage	•

A System With a Future

MasterTrace is the most complete system of heat tracing controllers. MasterTrace can handle all your heat trace control requirements and is the only heat trace system that offers Local, Group and Central Computer Interfaces (See MC100). MasterTrace combines the power and flexibility you need today with the ability to expand to meet your needs for the future.

MC100 Centralized Monitoring

For plant wide monitoring, the MC100 windows software package provides

programming and monitoring for MasterTrace heat tracing controllers on your PC. Process setpoints and alarm levels are programmed for each heater through the computer keyboard reducing data entry on large systems. Setpoint programming and configuration functions are password protected to restrict access. By connecting individual MasterTrace modules or panels together, heat tracing throughout an entire plant can be programmed and monitored from a single location.

MasterTrace Product Specifications

APPROVALS

Mechanical: Solid-State:	CSA ordinary (general purpose) areas CSA Class I, Division 2, Group A, B, C, D CSA Class I, Zone II Group IIC
Alarm Output:	NO and NC programmable contacts
Alarm Output Rating:	Mechanicai: 1.0A @ 120VAC max. (ordinary areas) 10mA @ 30VAC max. (hazardous areas)
Solid-state:	0.1A @ 30VAC max.
Control Power:	120VAC
Switch Rating: Internal:	30A @ 280VAC max.
External:	100A @ 600VAC max.
Temperature Input:	One or two 100 Ω , platinum, 3-wire RTD per
	point, 20Ω max. lead resistance $\pm 0.2A$ accuracy over $-50^{\circ}C$ to $+500^{\circ}C$
Heater Current Input:	One current transformer per point 3%±0.2A accuracy over 1.0A to 100A
Ground Fault Input:	One current transformer per point 5% ± 2mA accuracy over 0.01 to 3.0A
Operating Range:	-40ºC to +60ºC (LCD screen -20ºC to +60ºC) VFD vacuum fluorescent display -30ºC to +60ºC
Communication Ports:	(1) Parallel local interface connection (2) Serial network connections

USER-SETTABLE OPTIONS

Heater Status: Heater Name or Tag: Temperature Units: Control Strategy: Deadband: Stagger Start: PowerLimit: Temperature Setpoint: High Temperature Alarm: Low Temperature Alarm: High Current Alarm: Low Current Alarm: High Current Trip: Ground Fault Alarm: Ground Fault Trip: TraceCheck™ Interval: RTD Fail-Safe: Master Override: Alarm Contacts: Alarm Light:

Enable or disable 16-character alphanumeric ⁰Cor ⁰F On-off or proportional* 0º to 50ºC (0ºF to 90ºF) * On or off * 1.0A to 100A 0ºC to 500ºC (32ºF to 932ºF) 0ºC to 500ºC (32ºF to 932ºF) -50°C to 500°C (32°F to 932°F) 1.0A to 100A 1.0A to 100A 1.0A to 100A 0.01A to 1.0A 0.01A to 1.0A 1 to 24 hours Heater on or heater off ON or OFF NO or NC for each contact Alarm on, alarm off, Flash during alarm then on, Flash during alarm then off

SERIAL COMMUNICATIONS

Type:	- 1
Protocol:	1
Transmission Rate:	
Interconnect:	1
Highway Distance:	
Modules Per Hiahway	

RS 485 Modbus® RTU 1200-9600 baud 2-wire, shielded, twisted pair 4,000 feet without a repeater (1) interface and (30) control modules

MEASURED VALUES

Temperature: Minimum Temperature: Maximum Temperature: Heater Current: Heater Percent Power: Peak Heater Current: Ground Fault Current: Heater Utilization: Power Consumption: Operating Cost: -50°C to 500°C (-58°F to 932°F) -50°C to 500°C (-58°F to 932°F) -50°C to 500°C (-58°F to 932°F) 1.0A to 100A 0 to 100% 1.0A to 100A 0.01A to 1.0A 0 to 100% 0 to 1,000 MWh \$0 to \$1,000,000

ALARM MESSAGES

Temperature: Current: Ground Fault Current: TraceCheck:

Hardware:

High temperature alarm, Low temperature alarm High current alarm, Low current alarm, High current trip Ground fault current alarm, Ground fault current trip Switch shorted, High current alarm, Low current alarm, High current trip, Ground fault current alarm, Ground fault current trip Self-check failure, switch shorted, RTD open, RTD shorted

In heat trace design, cable and conduit for hard-wired RTD communications represent a large portion of project costs, even on small electrical heat tracing system designs. Wireless data transfer technology is becoming one of

the largest areas of growth in industrial plant applications and Nextron is the temperature control systems manufacturer that pairs technical innovation with savings.

CSA approved Class I, Division 2, Zone 2 microprocessor-based RTD sampler capable of transmitting and receiving data using the concept of direct sequence or frequency mode hopping wireless transmission. Using а

wireless system, temperature sensors are wired to RTD samplers located in the pipe racks and temperature information is transmitted to the controller via wireless modem,

dramatically reducing field-wiring costs to the end user. These transmitters then send temperature information to a remotely located MasterTrace module.

COMMUNICATION MEDIA

Rs485 Cable:	

RS485 cable (Figure 1) Wireless RF Modem: Transmit RTD measurements via

Wireless RF modems (Figure 2)

Transmit RTD measurements via

USER INTERFACE

LED: Power on, RTD OK, transmit, receive

Rs485 Port: Accessible to laptop, PC

ENVIRONMENT

Approvals:	CSA Class 1, Division 2, Groups A, B, C, D Class 1, Zone 2, Ex nA IIC, AEx nA IIC
Operating Range:	-40°C to +50°C
Conformal Coating:	Boards conformal coated for hostile environments. Altitude: 0-200m

ENCLOSURE

Type:	NEMA-4steel	Prote
Size:	10″Hx8″Wx4″D	
Features:	Quick release latches to open door (1) 0.875" conduit knockout for power wiring, two 1.093" conduit knocks for RTD wiring, one 0.75" conduit knock for RS485 cable or antenna	

TEMPERATURE MEASUREMENT RANGE

Range:	-50°C to 500°C, -58°F to 932°F
Absolute Accuracy:	±2.5°C, ±4.5°F
Repeatability:	±1°C, ±1.8°F
RTD:	100Ω platinum, 3-wire 10Ω max lead resistance

MODEL Configuration:

SAM-RTDxx-120V-y xx=10:10 RTDs xx=20: 20 RTDs y=R: Rs485 y=M: Wireless

CONTROL POWER

Power Requirements:	SAM-RTDxx-120V-y:120VAC, 10VA
Line Frequency:	50 or 60Hz
Protection:	Protected by non-replaceable 2A, time lag, 350 VAC fuse MOV transient protection & RC snubber

The MS-2101 temperature controller is a single point, microprocessor based heat trace controller designed for use in Class 1 Division 2 areas. The MS-2101 provides the control and monitoring for all types of heat tracing systems. The MS-2101/2 comes with two 30A circuits that are controlled with either one or two of the RTD inputs provided. These RTD inputs are user-settable with fail-safe features and can be configured to operate using only one, with the second as a backup. Alternatively, they can be configured to act as a high temperature cutout, or both can be used to control heat tracing based on values of the highest, lowest, or average of the two readings. The MS-2101/2 have both ON/OFF Control, with adjustable deadband, and Proportional Control that will maximize the performance and reliability of self-regulating and other types of heat trace. The master override input provides external control for load shedding or ambient temperature override. The PowerLimit feature reduces high inrush current associated with selfregulating cables, eliminating the requirement for over-sized breakers, and allows the operator to set the maximum average heater current level of each circuit. The MS-2101/2 has the capability of networking with other MasterTrace controllers providing the most flexible and cost effective solutions for your existing and future heat trace needs. The MS-2101/2 continuously monitors all important heat trace variables such as temperature, current, voltage and ground fault detection and alerts operators of possible problems before they occur. All user-selectable alarm levels are independent of the trip levels and additionally, the MS-2101/2 performs a self-check and monitors the RTD and switches. To ensure that your heat tracing system operates 24-7, 365 days/year, TraceCheck periodically energizes and checks for alarm conditions on all dormant signals. The MS-2101/2 also logs minimum and maximum values and energy usage. The MS-2101/2 offers a lot in a small convenient package.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

MS-2102 Specifications

MS-2101 Specifications

Range	-50 to +500°C (-58 to 932°F)	Range	-50 to +500°C (-58 to 932°F)	
Accuracy/Repeatability	Accuracy/Repeatability ±2°C, ±1°C Accuracy/Repeatability		±2°C, ±1°C	
RTD Input (2)Single 100Ω platinum, 3-wire 20Ω maximum lead resistance RTD Input		Dual 100Ω platinum, 3-wire 20Ω maximum lead resistance		
Configuration	(2) Single-pole control circuits 800A 1 cycle inrush	Configuration	One dual-pole control circuit 800A 1 cycle inrush	
Ratings	120V or 277V, 30A continuous, 50-60Hz	Ratings	120V-277V, 30A continuous, 50-60Hz	
Current Measurement	0.1 to 30A 3%±0.2A	Current Measurement	0.1 to 30A 3%±0.2A	
GF Measurement	10 to 1000mA 5% ±2mA	GF Measurement	10 to 1000mA 5% ±2mA	
Voltage Measurement	0 to 300VAC 3%±2V (Circuit 1 ONLY)	Voltage Measurement	0 to 300VAC 3%±2V	
Control Power	From heater 1 voltage 120V or 277V, 10VA max	Control Power	From heater voltage 85-280V, 10VA max	
Protection	Heater 1 voltage protected by 2A fuse MOV transient protection	Protection	Voltage protected by 2A fuse MOV transient protection	
Communications	(1) Modbus* RTU via R5485	Communications	(1) Modbus* RTU via RS485	
Transmission Rate	600, 1200, 2400, 4800, 9600 baud	Transmission Rate	600, 1200, 2400, 4800, 9600 baud	
Modules/Highway	32 Control Modules	Modules/Highway	32 Control Modules	
Display	16-character x 2-line LCD display	Display	16-character x 2-line LCD display	
Keypad	Setpoint, Status, Up, Down, Value Up, Value Down, Reset, Store	Keypad	Setpoint, Status, Up, Down, Value Up, Value Down, Reset, Store	
Panel Indicators	Power On, Heater On, Serial Comm, System Fail, Process Alarm	Panel Indicators	Power On, Heater On, Serial Comm, System Fail, Process Alarm	
Enclosure	NEMA-4X painted steel, 10"H x 8"W x 6"D	Enclosure	NEMA-4X painted steel, 10"H x 8"W x 6"D	
Features	3/4" knockout for power and (3)1/2" knockouts for miscellaneous	Features	3/4" knockout for power and (3)1/2" knockouts for miscellaneous	
Alarms	High/Low Temp, High/Low Current, Ground Fault, Low Voltage, Self-Check Fail, Relay Fail, RTD Open/Short	Alarms	High/Low Temp, High/Low Current, Ground Fault, Low Voltage, Self-Check Fail, Relay Fail, RTD Open/Short, Continuity	
Approvals	CSA C/US Class I, Div. 2, Groups A, B, C, D Class I, Zone 2, Groups IIC Class II, Div. 2, Groups F and G Class III	Approvals	CSA NRTL/C and FM Class I, Div. 2, Groups A, B, C, D Class I, Zone 2, Groups IIC Class II, Div. 2, Groups F and G Class III	

Example Configuration	MS-22	101
Master Trace	System Voltage	Weight
MS-210_	1=120V-277V	15 Lbs.
	2=120V/277V	15 Lbs.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

Description

DP distribution panels are built to job requirements. All DP panels feature solid state programmable controls and solid state relays or circuit breakers for efficient & reliable control of heating cables. A durable NEMA 4X rain-tight enclosure protects against the elements ensuring that all electrical is safely protected. Whether it be process temperature or freeze protection, distribution panels offer a singular, versatile and convenient source for locating your heat trace circuits for easy readout and assessment of system health. Distribution panels offer finer and easier adjustment of setpoint temperatures and better precision in monitoring over mechanical thermostats. Distribution panels can be customized to allow for future integration of controllers/relays for expanded heat trace systems. Distribution panels also come with serial comm ports for remote operability and can be configured with direction antennas for wireless communications, so you have access to your heat trace system from anywhere in the world.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Example Configuration	DPNL-2C-120V-2R/20A-10P-H-G-4X					
DPNL	Controllers	Operating Voltage	No. Relays	Relay Amps	Points	Options
Distribution Panel	1C=1 Controller	120V	1R=1 Relay	10A	*5P=5	H=Heated
	2C=2 Controller	208V	2R=2 Relays	20A	10P=10	G=GFI Protection
	3C=3 Controller	220V	3R=3 Relays	30A	15P=15	C 34
	4C=4 Controller	240V CONT CH	4R=4 Relays	35A	20P=20	10 04
4	80 VAC 10 GKNL	277V	5R=5 Relays	45A	25P=25	11
		480V	6R=6 Relays	55A	30P=30	

Notes: Controller operates on 100VAC to 240VAC or 24VDC and is preconfigured to accept a type K thermocouple. Each panel comes prewired with a small piece of SW-K to illustrate proper wiring. Please observe correct polarity when wiring thermocouple. For large scale heat trace jobs it is prudent to divide out circuits over multiple relays and gange relays into individual controllers (zoning). Avoid clustering circuits into large capacity singular relays. Never exceed 80% of a relay's capacity (National Electric Code). All parallel heat trace has two conductors and ground braid. When determining number of terminals each conductor is considered a point or terminal.* 5 points minimum.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

SSOCIATES, INC. heat tracing specialists

RSD 4.5-120-35A

SNOW MELTING CONTROLLER

Description

The RSD 4.5 is a snow melting system controller which utilizes remote moisture and temperature sensors. Controller is fully automatic, it senses both moisture and temperature during precipitation that could result in ice formation. The system operates only when ice or melt runoff water is detected. System can be manually operated, or is fully automatic. Control panel has indicators to allow visual confirmation of automatic enabled mode and indicate when the heater is on. The RSD 4.5 comes with a built-in 35A contactor for use with 120V-277V. Other contactors can be substituted for greater loads. Please provide system voltage when ordering.

 Specifications

 Energize temperature: 38°F

 Minimum on time: 1 hour

 Control voltage: 120-277VAC (Specify voltage)

 Built-In contactor: 35A resistive @ 120-277VAC

 Contactor Output: T1 and T2

 Mounting Options: Indoor/Outdoor

 Control toggle features AUTO/OFF/ON push button

 Default setting: AUTO

 Energy Saving Features: Auto toggle @ 70°F for 10 min.

Note: Turn off power to during Summer months. Always deenergize unit prior to maintenance.

Features

- Features a hold-on timer which will continue to apply heat for a time after the icing condition stops. This allows the heater to completely melt remaining snow and ice.
- Controller is equipped with a push-button which allows the operator to manually energize or disable the heater as desired. Controller will monitor ambient temperature and place itself in
- the AUTO mode from the ON/OFF modes in the event it monitors 70°F for 10 minutes.
- Mount system allows tab-screw mounting.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133 ©2016 TAD & Associates, Inc. Phone: 830.964.4435 Fax: 830.964.4441 http://www.tad-associates.com

Remote Temperature Sensor

•

SSOCIATES, INC.

heat tracing specialists

AIC 4

SNOW MELTING CONTROLLER

Description

The AIC is a universal snow and ice detector used to control snow melting heaters. Controller operates heaters during snowfall or icing conditions. When operating only during precipitation WITH cold, substantial energy savings are seen over traditional thermostatic controls.

Features

- Hold-on timer will keep system energized for a time after the icing condition stops. This allows the heaters to completely melt remaining snow and ice.
- Push-button allows the operator to energize/de-energize the system or • run in full auto.
- The AIC4 switches to AUTO if it senses 70°F for 10 mins. This is a an exclusive safety feature that ensures your system is not unnecessarily energized if left in Manual On mode.
- Universal mount system allows either conduit top mounting or through mounting tabs.

Operation

Unit is designed to be fully automatic, it senses both moisture and temperature. During precipitation that could result in ice formation the control will energize its output relay. Increased load capacity, or 3-phase loads, can be operated by having this unit operate a remote mounted contactor.

Specifications

- 1. Sensor initiates control operation during conditions Normal boot-up mode is AUTO. In AUTO, the control will ambient temperature is below 40°F.
- 2. The controller will assure a minimum on time of one hour.
- 3. Controller operates on 120VAC or 208-277VAC

To alternat

- 4. The relay provided is rated at 16A @ 120V. Local codes and mode is changed. accepted wiring practices may limit actual usage further. For 3-Phase or for larger loads, use this unit to power an available external contactor.
- Weather resistant enclosure for outdoor mounting. 5.
- 6. The controller provides an AUTO/OFF/ON switch.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Moisture sensing grid

©2016 TAD & Associates, Inc.

conducive to ice formation. That is, precipitation when the activate its relay when icing conditions are indicated by the sensor and will energize for an hour. In the OFF position, the heater remains off regardless of icing conditions until mode is changed. In the ON position, the contactors are engaged until

The R series connection kits offer the most versatile and durable platform for terminating constant wattage, self-regulating and MI heating cables in both ordinary & division 2 locations. The RPC & RTC both have an 3/4" conduit opening for service while the RSL functions as an monitor light. Each enclosure comes with DIN mounted 600V rated terminals for quick & reliable electrical connection. The RPC comes standard with an end seal for a complete circuit. The RSL accommodates a range of service voltages from 120V-277V and is used for indicating voltage at the end-of-circuit. The RTC can function as either a 3-way power connection or above-insulation splice & tee kit. R series kits are NEMA 4X rated and approved for use in Class 1 Division 2 areas (3rd Party Certification).

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

- Junction Box
- Cover
- Mounting Bracket
- 2 Sealing Grommets
- Lock Ring
- Compression Fitting
- Power Termination Boot
- End Termination Cap
- Silicone Packet
- Pipe Strap

RSL Contents

- Junction Box
- Cover w/ 33mm LED
- Mounting Bracket
- Compression Fitting
- 2 Sealing Grommets
- Pipe Strap
- Lock Ring
- Power Termination Boot
- Silicone Packet

RTC Contents

- Junction Box
- Cover
- Mounting Bracket
- Compression Fitting
- 2 Sealing Grommets
- 1" NPT Plug
- Pipe Strap
- 2 Lock Rings
- 3 Power Termination Boot
- Silicone Tube

Features

- Corrosion resistant
- Thermal stability
- Non-flammable
- Captive stainless hardware
- Water resistant
- 3/4" conduit hub opening
- DIN rail mounted terminal blocks
- UV resistant

Ordering Information

Example Configuration		RPC-1-SR	
Connection Type	Pipe Size	Cable Type* (RPC)	Weight
RPC	1=1"-3"	SR=Self-Regulating	1.9 Lbs.
RSL	2=2"-14"	CW=Constant Watt	2.0 Lbs.
RSL-4- (480V)	3=3/4"-1"		2.0 Lbs.
RTC			5.0 Lbs.
			•

Note: *Cable type is for end termination purposes (RPC ONLY). Not for use with RSL. RSL-4 is for 480V constant wattage ONLY! See banding sizes below for mounting considerations.

Construction

Enclosure ¹	Fiberglass Reinforced Duroplastic Polyester
Stand-Off/Compression ²	Ryton PPS
Temperature Range ¹	-60°F to 420°F
Melting Point	480°F ¹ , 540°F ²
Entry Hole (RPC, RTC)	1-1/16" (Hole Diameter), 3/4" Hub
Lamp Type (RSL)	30mm LED 24VDC-277V
Termination Cap (RPC)	500°F Silicone
Dimensions (RPC, RSL)	4.8″Lx4.42″Wx3.58″D (w/ cover)
Dimensions (RTC)	6-13/16″Lx4″Wx3-9/32″ (w/ cover)

Note: Assembled in U.S. with some imported materials

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

The PL power connection kit is a simple and inexpensive solution for terminating constant wattage and self-regulating cables in nonhazardous locations. The TML monitor light kit is used for assessing the operating status of electric heating cables in the field. The TML is used in lieu of traditional end seals when a visual cue of system functionality is desirable. It comes with an LED to provide years of uninterrupted service. Both connection kits come with terminal blocks that can be configured as floating or fixed and the two supplied pipe straps are used for securing the mounting bracket to the pipe. The enclosure and mounting bracket are made from high temperature nylon that is rated up to 380°F and is NEMA 4X rated. The supplied end termination cap in the PL is used to terminate the heat trace at the end of the circuit. The PL power connection kit offers a complete termination package for one heat trace circuit.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Material	Nylon Polifil 627
Melting Point	400°F
Temperature Range	-60°F to 380°F
Hub Size	1" NPT
Light (TML)	22mm LED
End Seal Type (PL)	Silicone 500°F
Dimensions	6-13/16″Lx4″Wx3-9/32″D(w/ cover)

Construction

Example Configuration	TML-2-1			
PL ¹	Voltage ²	Pipe Size ^{1,2}	Cable Type ¹	Weight
Power Connection Kit	1=120V	1=1"-3"	SR=Self-Regulating	1.3 Lbs.
	2=208V-277V	2=2"-14"	CW=Constant Watt	1.5 Lbs.
	4=480V*	3=3/4"-1"		1.0 Lb.
TML ²				
Monitor Light Kit				
			*	

Note: Cable type is for end termination purposes. Voltage applies to TML only.^{*}480V *is exclusive to constant watt cables.*

Setup & Configuration Options

2"-14" Pipes

The RGPK power connection kit is for making power terminations or tee splices inside a NEMA 4X enclosure through water tight CGB fittings primarily for roof and gutter applications. The RGPK power connection kit may be used for single or multiple power connections. An additional CGB expansion kit is required for tee splices.

The SCK-2 power termination kit is for terminating self-regulating or constant wattage heater cables into a NEMA 4X enclosure (customer supplied) through a CGB fitting. The kit comes with heat shrink tubing to isolate each conductor including the ground braid. The SCK-2 is ideal for use in roof and gutter applications and comes with wire nuts for connecting to service leads.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

		Constructio	on	
Material		Nyle	on Polifil 62	7
Melting Point		400)°F	
Tensile Strength		6,80	00 PSI	
Izod Impact Streng	th	Ft./	Lb./Inch No	tch 16
Rockwell Hardness		R Sc	cale 105	
Operating Tempera	iture Ra	1 ge -60'	°F to 380°F	
Hub Size		1″ ľ	NPT	
Dimensions		6-1.	3/16″Lx4″W	/x3-9/32″D
CGB Fitting		Nyle	on 6/6 (212	°F)
Bushing		Bun	na-N (212°F)	
	Sec.	ond Circuit (O	optional)	
Example Configur	Sec Orde	ond Circuit (O	Optional) mation RGPK-SR	
Example Configur RGPK	Sec Orde	ond Circuit (O	optional) mation RGPK-SR e Type	Weight
Example Configur RGPK Power Connectio	Sec Orde	ond Circuit (O cable SR=Self-Regu	optional) mation RGPK-SR e Type llating	Weight 1.5 Lbs.
Example Configur RGPK Power Connection SCK-2	Sec Orde	ond Circuit (O ering Inform Cable SR=Self-Regu CW=Constant	Optional) mation RGPK-SR e Type lating t Watt	Weight 1.5 Lbs. 1.5 Lbs.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

RCK roof clips are used to secure heat trace to rooftops. Roof clips can be used on most types of roofing surfaces with self-regulating and constant wattage heating cables. The kits contains enough double clips to complete 7 linear feet of roof edge.

RDK downspout hangers are used to suspend heat trace in downspouts to melt ice and ensure proper drainage. Downspout hangers can be used with constant wattage or self-regulating heating cables. Downspout hangers are secured to gutters with a sheet metal screw (not supplied).

The RGSK splice kit is used for splicing two self-regulating or constant watt cables together in the field using industrial grade heat shrink with integral adhesive. The heat shrink has an temperature range of –67°F to 230°F and is constructed of polyolefin with a 3:1 shrink ratio and an internal sealant to ensure a watertight, super strong seal.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133 ©2016 TAD & Associates, Inc.

The ESK inline splice kit is used for splicing together two parallel resistant electric heating cables under the insulation whereas the TSK tee splice kit is used for splicing together three cables. The advantages of using the under the insulation splice kits is for low cost, low visibility, and fewer protruding ancillaries along the pipe. The self-vulcanizing tape has good elasticity and is used for dielectrically insulating the conductors from each other. The splice kits are for use in ordinary, non-classified areas only.

Ordering Information

Example Configuration	ESK-14		
Splice Type	Conductor Size	Weight	
TSK=Tee Splice	12=12 AWG	1.0 oz.	
ESK=Inline Splice	14=16-14 AWG	1.0 oz.	
Note: The 14 can accommodate 16-14 AWG conductors (ideal for all self-regulating and FEP-			

LT, FEP-M) and the 12 can accommodate 14-12 AWG conductors (ideal for an sen-regulating and FE

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133 ©2016 TAD & Associates, Inc.

heat tracing specialists

STRAPPING TAPES

SSOCIATES, INC.

Description

Fiberglass tape is traditionally used to secure heat tracing to pipes, valves, flanges, pumps, instrumentation, etc. FG-1 fiberglass tape is a general purpose tape reinforced with glass-yarn filaments that gives the tape high tensile strength, low stretch and superior tack. It's excellent for freeze protection and low temperature process applications. FG-3 glass cloth tape is a glass cloth tape with a high-temperature thermosetting silicone adhesive. This adhesive provides an increased bond once applied in areas of high ambient/process temperatures. FG-3 should be used in medium-high process temperature applications. AL-1 aluminum tape is used to improve heat transfer between tracers and pipes/vessels while lowering cable sheath temperature. Aluminum tape is mandatory for use on all polyvinyl/polyethylene pipes & FRP vessels and is overall beneficial in conductance of heat in all heat tracing applications by ensuring a healthy mechanical bond.

Specifications

Tensile Strength (lbs/inch)	300(FG-1), 180(FG-3), 21(AL-1)
Overall Thickness (Mils)	6.0(FG-1), 7.0(FG-3), 3.4(AL-1)
Elongation	4.5%(FG-1), 5%(FG-3), 4%(AL-1)
Temperature Rating	185°F(FG-1), 400°F(FG-3), -40°F-250°F(AL-1)
Electrical Strength (Volts)	3,000 (FG-3)
Backing	Glass Filament, Glass Cloth, 2 Mil Dead Soft Aluminum
Adhesive	Rubber Resin, High-Temp Silicone, Acrylic
Adhesion (oz./inch)	55, 40, 45
Dimensions (Weight)	3/4" x 180' (.8 Lbs.), 1/2" x 108' (.3 Lbs.), 2" x 150' (1.5 Lbs.)

Note: For FG tapes, the amount of tape required to secure heat trace is determined by taking the pipe diameter and finding the circumference ($C = D \times \pi$) and adding 3" or >(avg.) of overlap. Divide your answer by 12 (12"/ft.) and multiply your answer times the length of pipe to be traced then divide by the number of feet of tape per roll. AL-1 tape should be applied lengthwise directly over the cable and pressed down around the edges to improve conduction.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133 ©2016 TAD & Associates, Inc.

Description

CL-1 caution labels are used for identifying areas where heat trace is installed and are helpful for alerting operations personnel of potential shock hazards. CL-1 caution labels are to be affixed on insulating materials placed over heat trace. Recommended placement is between 10' and no more than 25' apart.

PS series pipe straps are used to secure connection kits via mounting brackets to pipes and other convenient appendages. PS series pipe straps are constructed of 201/301 stainless steel and have a 5/16" hex head for ease of installation.

The PTB power termination boot is for use with self-regulating cables only. It's an alternative to heat shrink and slides right over the conductors. The kit comes with a packet of silicone to provide a strong seal.

Ordering Information

Example Configuration	PS-1	Weight
РТВ	Power Termination Boot	0.8 oz.
PS ¹	1=1"-3" Pipe Size ¹	1.2 oz.
	2=2"-14" Pipe Size ¹	2.8 oz.
	3=3/4"-1" Pipe Size ¹	0.8 oz.
CL-1	Caution Labels (5/Pack)	1.0 oz.
	<u>.</u>	

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133 ©2016 TAD & Associates, Inc.

The EC-1 end termination kit is used for terminating self-regulating and constant wattage heating cables. The RTV and end cap combine to form a durable, moisture resistant seal and are ideal for use in both ordinary and class 1 division 2 locations where open flames are discouraged. The EC-1 is also a great choice for low profile, under-the-insulation end seal. The end seal has a continuous exposure temperature of 500°F and can withstand intermittent excursions to 650°F making it ideal for virtually all heat tracing applications. The HSE-2 can be used with constant wattage and self-regulating cables in ordinary locations and is suitable for use in freeze protection, low process temperature & roof & gutter applications. It comes standard with a ground lug for grounding continuity. The heat shrink has an operating temperature range of -67°F to 230°F and is constructed of polyolefin with a 3:1 shrink ratio and an internal sealant to ensure a strong watertight seal.

Ordering Information				
Example Configuration	EC-1SR			
Termination Type	Cable Type	Weight		
EC-1	SR=Self-Regulating	1.0 oz.		
HSE-2	CW=Constant Watt	2.0 oz.		
Note: For bulk orders, one seals. SR=16-14AWG buss	RTV packet is sufficient for th wires & CW=14-12AWG buss	ree end wires.		

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133 ©2015 TAD & Associates, Inc.

EC-1 Contents

- End Cap
- RTV Packet

HSE-2 Contents

- Heat Shrink Tube
- Ground Lug

HEAT TRANSFER CEMENT

Description

HTM-750/1250 heat transfer cement (mastic) is designed to significantly improve the heat transfer between tracers and process lines. Heat transfer cement thermally bonds steam and electric heat tracers to process pipes, valves, pumps and other equipment. It fills the air cavities that normally exist between the heat tracer and process equipment with heat conductive, thermal mastic that efficiently transfers heat through conduction to the process equipment. By replacing the normal air gaps with the heat conductive cement, the heat transfer rates are improved by up to 10 times that of convective heat transfer.

HTM-NS-450 is typically used with plate coil steam tracing on vessels where expansion/contraction concerns are present and also allows for ease of disassembly. It is also beneficial for transmission of cold temperatures in certain applications.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Туре	HTM-750-1	W	eight (Lb	s.)
HTM-750	Container Size	750	1250	450
HTM-1250	1=One Gallon	15	13	12
HTM-NS-450	5=Five Gallon	75	65	60
6. 8	Q=Quart	4	3.5	3
Standard Bar	C=0.10 Gallon Cartridge	1.5	1.3	1.2

Accessories

CH-2	Channel for 1/2" Tracer (4' section)
CH-3	Channel for 3/4" Tracer (4' section)
CH-4	Channel for 1/4" Tracer (4' section)
SSB-1	Stainless Steel 1/2" x 0.02" Banding (823'/Roll)
SSCR-1	Stainless Crimp Seals for Banding (1,000/Box)
BT-1	Banding Tool for Stainless Steel Banding

Coverage Rates

Application Method	1.1.1		Tracer Sizes		
	5/16" OD	3/8" OD	1/2" OD	3/4" OD	1" OD
CH-2	26'	28'	32'	N,	4
СН-З		NA		19'	NA
Hand Trowel	52′	32'	28'	14'	9'
Flat Surface	1 Gal	$lon = 6 ft^2 (2)$	/4" Thick).	12 ft. ² (1/8" T	hick)

Typical hand trowel application

Optional channel reduces waste, weather protects and eliminates curing requirements

Features

- Thermally bonds steam, fluid, and electric heat tracers to process pipes, vessels and equipment.
- With its high conductivity, significantly improves heat transfer between steam and fluid tracer tubes and process pipes.
- Provides an easy to install, cost effective alternative to jacketed piping and internal tracer systems.
- One tracer installed with HTM will deliver the equivalent heat of up to four bare (no cement) tracers. With the elimination of multiple tracers, the costs to install and maintain the tracing system is greatly reduced.
- Non-setting mastic remains pliable indefinitely and allows for easy disassembly of tracing systems.
- HTM-NS-450 requires no special curing.
 - With its high conductivity, significantly improves heat transfer between steam and fluid tracer tubes and process pipes; also plate-type steam, fluid and electric heating coils installed on storage and processing tanks.

Thickness 1/4" - 1/8"

Apply evenly over coil surface area filling irregular voids

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

QUICK TRACE

Accessories

Description

QuickTrace is an innovative product designed to minimize installation time and labor. It reduces waste and provides the best heat transfer cement for the operational demands. The cement is packaged in 4 Ft. flexible sections and is measured to cover the specific tracing system being installed. Both hardening and non-hardening cements are available with operating temperatures up to 1250°F. QuickTrace comes standard with a 4 Ft. galvanized metal channel that compresses and forms the cement to the tracer and pipe wall while providing mechanical and weather protection for the tracing system.

Ratings

Maximum Exposure Temperature: NS = 400°F; SM = 750°F; HT = 1250°F Minimum Application Temperature: 10°F Heat Transfer Coefficient: 20-40 BTU/Hr-Ft²°F Water Soluble: NS = No; SM & HT = Yes Shelf Life: 1 Year

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133

Example Configuration		HTM-QT-SM-	2-1	-
HTM-QT	Cement Type	Tracer Size	Channel Type	Weight
QuickTrace	NS=Non-Setting	4=1/4"	1 = Galvanized	Call
	SM=Standard Mastic	2=3/8"- 1/2"	2 = 304SS	Call
	HT=High Temperature	3=3/4"	3 = 316SS	Call
		1 = 1"		Call

Note: 1/2" channel will accommodate 3/8" tracers. Stainless channels available as an upgrade to galvanized for corrosive atmospheres. Bulk custom lengths available upon request.

Features

- Thermally bonds steam, fluid, and electric heat tracers to process pipes, vessels and equipment.
- With its high conductivity, significantly improves heat transfer between steam and fluid tracer tubes and process pipes; also plate-type steam, fluid and electric heating coils installed on storage and processing tanks.
- Preformed, flexible heat transfer mastic provides a rapid, consistent, easy to install, cost effective alternative to jacketed piping and internal tracing systems
- One tracer installed with HTM-QT will deliver the equivalent heat of up to four bare (no HTM) tracers. With the elimination of multiple tracers, the costs to install and maintain the tracing system is greatly reduced.

Note: 1/4" & 1" channels not shown.

Accessories

SSB-1	Stainless Steel 1/2" x 0.02" Banding (823'/Roll)
SSCR-1	Stainless Crimp Seals for Banding (1,000/Box)
BT-1	Banding Tool for Stainless Steel Banding

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602

