


heat tracing specialists

Made in USA

MISS

MINERAL INSULATED HEATER CABLE

Heat Trace

- 1. End Termination
- 2. Alloy 825 Stainless Steel
- 3. Hot/Cold Joint
- 4. Compression Fitting

Description

MI heater cables are seamless die drawn cables that are made to specified lengths to deliver high power output along the entire length of the cable. It's nichrome heating conductors are embedded in highly compressed magnesium oxide dielectric and covered with a stainless Alloy 825 sheath. The sheath is fully annealed and is easily hand formable.

MI heater cables are factory assembled and cannot be cut to length in the field. Both hot and cold sections are made to customer specifications. MI cables can be completely submersed which makes them great for gut tracing applications. MI cables can also be equipped with reversed glands and puller-eyes to assist in cable installation and capping small diameter pipes. MI cables resist the most aggressively corrosive environments. Alloy 825 cables are capable of withstanding temperatures up to 1,000°F.

Applications

MI heater cables are suitable for use in pipe tracing applications where high temperatures are required, pad heating/snow melting where removal of snow and ice are needed for safety. MI heater cables are also useful in large vessel and hopper heating applications. In tank and hopper heating applications MI is attached to sheets of wire mesh to help diffuse the heat into the tank walls. Because MI cables are silver soldered and waterproof they are a great choice in "gut" tracing applications.

Calculation

To determine which conductor in Table 2 will satisfy performance requirements follow the arithmetic below.

Conductor $(\Omega/Ft.) = \frac{Voltage^2}{Length^2(Cable W/Ft.)}$

Compare the answer to the closest available conductor that will yield desired effect. Recalculate using formula above to determine exact output and whether the result is favorable and will not impose any safety or damage potential. No more than 4 W/Ft. is permissible on PVC and polyethylene pipe. Some design complications may arise under certain circumstances due to variables, however there are workarounds such as transformers.

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, Texas 78133 Phone: 830.964.4435 Fax: 830.964.4441

http://www.tad-associates.com

Ordering Information

Example Configuration			MISS-K742-AN-125-03-C1-E							
MISS	Conductor	Form	Hot Section	Cold Section	Options	Options Continued				
	Table 2	AN	See Notes	.5' - 40' Exp.	C1=1/2" Reversed Gland	P=PVC Jacketed Cold Section				
		BN			C2=3/4" Reversed Gland	U=NEMA 7 Termination				
		CN			E=Puller-Eye End	X=Other, Specify				
					G=Glass Wrapped Hot Section					

 $Note: Hot \ section \ length \ is \ dependent \ on \ several \ factors \ including \ voltage, \ cable \ output, \ conductor, \ amperage.$

					Construction	1				
_			T 0 1					— AN F	orm Factor	
_			Two Conduct	tor						_
	XIIIIIII			F	BN Form Factor				JANNAN -	
_				-	on rommractor					_
	— Managari		Single Condu	 ictor					- Paramana	
			g							
_						Single Conducto	or Loop	CN Form Factor	r	
	Cold Sec	ction	Hot Section							
	300 Volt, 2 Conductor 3/16" OD .07 Lbs/Ft.			600 Volt, 2 Conductor 5/16" OD .22 Lbs/Ft.			600 Volt, 1 Conductor 3/16" OD .07 Lbs/Ft.			
	Size	Ohms/Ft.	Max Exp Temp°F	Size	Ohms/Ft.	Max Exp Temp°F	Size	Ohms/Ft.	Max Exp Temp°F	
	K556	.043*		B588	.0071*		K145	.0046*		1
	K658	.058*	1	B614	.0149*	1	K189	.0090*	600	
	K674	.074*		B627	.027*	600	K216	.0165*		
	K693	.093*	600	B640	.040*		K239	.039		
	K712	.117*		B670	.065		K250	.050		
	K715	.147*		B710	.104		K279	.079		
	K721	.213*		B715	.162		K310	.095		
	K732	.319		B720	.205		K316	.157		
	K742	.416		B732	.325		K326	.260	2	
	K752	.520		B750	.500	1.000	K333	.330	1 000	
	K766	.660		B774	.735	1,000	K346	.457	1,000	7
	K774	.740		B810	1.162		K372	.730		
	K810	1.00		B819	1.87		K412	1.17		
	K813	1.30		B830	2.97		K415	1.48		
	K818	1.80	1,000	B840	4.30		K423	2.36		
	K824	2.34	1,000	B859	5.98		K430	2.80		
	K830	2.96					K447	4.50].
	K838	3.70								68°F
	K846	4.72								s @
	K860	5.60								alue
	K866	6.60								All v
	K894	9.00								Note: All values @ 68°F
	K919	18.00								_ <

...

TAD & Associates, Inc. P.O. Box 2170 Canyon Lake, TX 78133 800-755-7602